'

Search results

Found 1172 matches
Cantilever Euler Beam - Maximum Displacement

Euler–Bernoulli beam theory (also known as engineer’s beam theory or classical beam theory) is a simplification of the linear theory of elasticity ... more

Optimum pyramidal horn antenna - H-field

A horn antenna or microwave horn is an antenna that consists of a flaring metal waveguide shaped like a horn to direct radio waves in a beam. Horns are ... more

Optimum pyramidal horn antenna - E-field

A horn antenna or microwave horn is an antenna that consists of a flaring metal waveguide shaped like a horn to direct radio waves in a beam. Horns are ... more

Optimum conical horn antenna

A horn antenna or microwave horn is an antenna that consists of a flaring metal waveguide shaped like a horn to direct radio waves in a beam. Horns are ... more

Near branch of a hyperbola in polar coordinates with respect to a focal point

In mathematics, a hyperbola is a type of smooth curve, lying in a plane, defined by its geometric properties or by equations for which it is the solution ... more

Glide Ratio

Gliding flight is heavier-than-air flight without the use of thrust; the term volplaning also refers to this mode of flight in animals. It is employed by ... more

Hyperboloid of one sheet equation

In mathematics, a hyperboloid is a quadric – a type of surface in three dimensions – . A hyperboloid of revolution of one sheet can be obtained by ... more

Hyperboloid of two sheets equation

In mathematics, a hyperboloid is a quadric – a type of surface in three dimensions – . A hyperboloid of revolution of two sheets can be obtained by ... more

Euler line (distance between the centroid and the circumcenter of a triangle)

In geometry, the Euler line is a line determined from any triangle that is not equilateral. It passes through several important points determined from the ... more

Worksheet 334

In a video game design, a map shows the location of other characters relative to the player, who is situated at the origin, and the direction they are facing. A character currently shows on the map at coordinates (-3, 5). If the player rotates counterclockwise by 20 degrees, then the objects in the map will correspondingly rotate 20 degrees clockwise. Find the new coordinates of the character.

To rotate the position of the character, we can imagine it as a point on a circle, and we will change the angle of the point by 20 degrees. To do so, we first need to find the radius of this circle and the original angle.

Drawing a right triangle inside the circle, we can find the radius using the Pythagorean Theorem:

Pythagorean theorem (right triangle)

To find the angle, we need to decide first if we are going to find the acute angle of the triangle, the reference angle, or if we are going to find the angle measured in standard position. While either approach will work, in this case we will do the latter. By applying the cosine function and using our given information we get

Cosine function
Subtraction

While there are two angles that have this cosine value, the angle of 120.964 degrees is in the second quadrant as desired, so it is the angle we were looking for.

Rotating the point clockwise by 20 degrees, the angle of the point will decrease to 100.964 degrees. We can then evaluate the coordinates of the rotated point

For x axis:

Cosine function

For y axis:

Sine function

The coordinates of the character on the rotated map will be (-1.109, 5.725)

Reference : PreCalculus: An Investigation of Functions,Edition 1.4 © 2014 David Lippman and Melonie Rasmussen
http://www.opentextbookstore.com/precalc/
Creative Commons License : http://creativecommons.org/licenses/by-sa/3.0/us/

...can't find what you're looking for?

Create a new formula