Search results

Found 1029 matches
Worksheet 333

A typical small rescue helicopter, like the one in the Figure below, has four blades, each is 4.00 m long and has a mass of 50.0 kg. The blades can be approximated as thin rods that rotate about one end of an axis perpendicular to their length. The helicopter has a total loaded mass of 1000 kg. (a) Calculate the rotational kinetic energy in the blades when they rotate at 300 rpm. (b) Calculate the translational kinetic energy of the helicopter when it flies at 20.0 m/s, and compare it with the rotational energy in the blades. (c) To what height could the helicopter be raised if all of the rotational kinetic energy could be used to lift it?

The first image shows how helicopters store large amounts of rotational kinetic energy in their blades. This energy must be put into the blades before takeoff and maintained until the end of the flight. The engines do not have enough power to simultaneously provide lift and put significant rotational energy into the blades.
The second image shows a helicopter from the Auckland Westpac Rescue Helicopter Service. Over 50,000 lives have been saved since its operations beginning in 1973. Here, a water rescue operation is shown. (credit: 111 Emergency, Flickr)


Rotational and translational kinetic energies can be calculated from their definitions. The last part of the problem relates to the idea that energy can change form, in this case from rotational kinetic energy to gravitational potential energy.

Solution for (a)

We must convert the angular velocity to radians per second and calculate the moment of inertia before we can find Er . The angular velocity ω for 1 r.p.m is

Angular velocity

and for 300 r.p.m


The moment of inertia of one blade will be that of a thin rod rotated about its end.

Moment of Inertia - Rod end

The total I is four times this moment of inertia, because there are four blades. Thus,


and so The rotational kinetic energy is

Rotational energy

Solution for (b)

Translational kinetic energy is defined as

Kinetic energy ( related to the object 's velocity )

To compare kinetic energies, we take the ratio of translational kinetic energy to rotational kinetic energy. This ratio is


Solution for (c)

At the maximum height, all rotational kinetic energy will have been converted to gravitational energy. To find this height, we equate those two energies:

Potential energy


The ratio of translational energy to rotational kinetic energy is only 0.380. This ratio tells us that most of the kinetic energy of the helicopter is in its spinning blades—something you probably would not suspect. The 53.7 m height to which the helicopter could be raised with the rotational kinetic energy is also impressive, again emphasizing the amount of rotational kinetic energy in the blades.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Effective interest rate

The effective interest rate, effective annual interest rate, annual equivalent rate (AER) or simply effective rate is the ... more

Evaporation - Penman Equation (Shuttleworth modification)

The Penman equation describes evaporation (E) from an open water surface, and was developed by Howard Penman in 1948. Penman’s equation requires ... more

Arrhenius number

In chemical kinetics, the pre-exponential factor or A factor is the pre-exponential constant in the Arrhenius equation. Here named as Arrhenius number.

... more

Relation between a rate of return and a return over a period of time ( reinvested)

In finance, return is a profit on an investment. It comprises any change in value, and interest or dividends or other such cash flows which the investor ... more

Rolling Resistance Coefficient

Rolling resistance, sometimes called rolling friction or rolling drag, is the force resisting the motion when a body (such as a ball, tire, or wheel) rolls ... more

Days In Inventory

Days in inventory is an efficiency ratio that measures the average number of days the company holds its inventory before selling it. Cost of goods sold or ... more

Magnification of the telescope

Optical magnification is the ratio between the apparent size of an object (or its size in an image) and its true size, and thus it is a dimensionless ... more

Estimated Blood Alcohol Concentration - EBAC

Blood alcohol content (BAC), also called blood alcohol concentration, blood ethanol concentration, or blood alcohol level is most ... more

Maximum Spring Force (Fully Compressed)

A spring is an elastic object used to store mechanical energy. Springs are usually made out of spring steel. Small springs can be wound from pre-hardened ... more

...can't find what you're looking for?

Create a new formula