'

Search results

Found 915 matches
Strain energy release (Irwin's modification for plane stress)

A fracture is the separation of an object or material into two, or more, pieces under the action of stress.There are three ways of applying a force to ... more

Concentric tube heat exchanger - Required length

Concentric Tube (or Pipe) Heat Exchangers are used in a variety of industries for purposes such as material processing, food preparation, and ... more

Hooke's Law (spring)

Hooke’s Law of elasticity is an approximation that states that the amount by which a material body is deformed (the strain) is linearly related to ... more

Coefficient Of Performance for a perfectly reversible cooler

Pulse tube cryocooler(or refrigerator) can be made without moving parts in the low temperature part of the device, making the cooler suitable for a wide ... more

Worksheet 333

A typical small rescue helicopter, like the one in the Figure below, has four blades, each is 4.00 m long and has a mass of 50.0 kg. The blades can be approximated as thin rods that rotate about one end of an axis perpendicular to their length. The helicopter has a total loaded mass of 1000 kg. (a) Calculate the rotational kinetic energy in the blades when they rotate at 300 rpm. (b) Calculate the translational kinetic energy of the helicopter when it flies at 20.0 m/s, and compare it with the rotational energy in the blades. (c) To what height could the helicopter be raised if all of the rotational kinetic energy could be used to lift it?


The first image shows how helicopters store large amounts of rotational kinetic energy in their blades. This energy must be put into the blades before takeoff and maintained until the end of the flight. The engines do not have enough power to simultaneously provide lift and put significant rotational energy into the blades.
The second image shows a helicopter from the Auckland Westpac Rescue Helicopter Service. Over 50,000 lives have been saved since its operations beginning in 1973. Here, a water rescue operation is shown. (credit: 111 Emergency, Flickr)

Strategy

Rotational and translational kinetic energies can be calculated from their definitions. The last part of the problem relates to the idea that energy can change form, in this case from rotational kinetic energy to gravitational potential energy.

Solution for (a)

We must convert the angular velocity to radians per second and calculate the moment of inertia before we can find Er . The angular velocity ω for 1 r.p.m is

Angular velocity

and for 300 r.p.m

Multiplication

The moment of inertia of one blade will be that of a thin rod rotated about its end.

Moment of Inertia - Rod end

The total I is four times this moment of inertia, because there are four blades. Thus,

Multiplication

and so The rotational kinetic energy is

Rotational energy

Solution for (b)

Translational kinetic energy is defined as

Kinetic energy ( related to the object 's velocity )

To compare kinetic energies, we take the ratio of translational kinetic energy to rotational kinetic energy. This ratio is

Division

Solution for (c)

At the maximum height, all rotational kinetic energy will have been converted to gravitational energy. To find this height, we equate those two energies:

Potential energy

Discussion

The ratio of translational energy to rotational kinetic energy is only 0.380. This ratio tells us that most of the kinetic energy of the helicopter is in its spinning blades—something you probably would not suspect. The 53.7 m height to which the helicopter could be raised with the rotational kinetic energy is also impressive, again emphasizing the amount of rotational kinetic energy in the blades.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Rankine Gordon formula (Maximum axial load that a column will buckle)

Column or pillar in architecture and structural engineering is a structural element that transmits, through compression, the weight of the structure above ... more

Stokes' law

Stokes’ law is an expression for the frictional force – also called drag force – exerted on spherical objects with very small Reynolds numbers (e.g., ... more

Spherical shells: ASME Boiler and Pressure Vessel Code (BPVC) (UG-27)

The ASME Boiler and Pressure Vessel Code (BPVC) is an American Society of Mechanical Engineers (... more

Latent Heat

Latent heat is the energy released or absorbed by a body or a thermodynamic system during a constant-temperature process. A typical example is a change of ... more

Auger electron spectroscopy - Electron impact cross-section (account for matrix effects)

Auger electron spectroscopy is a common analytical technique used specifically in the study of surfaces and, more generally, in the area of materials ... more

...can't find what you're looking for?

Create a new formula