'

Search results

Found 544 matches
Gompertz–Makeham Law of Mortality

The Gompertz–Makeham law states that the human death rate is the sum of an age-independent component (the Makeham term, named after William Makeham) and an ... more

Division

It is an arithmetic operation.Conceptually, division describes two distinct but related settings. Partitioning involves taking a set of size a and forming ... more

Security characteristic line

Security characteristic line (SCL) is a regression line, plotting performance of a particular security or portfolio against that ... more

Preload (cardiac)

Preload is described as the stretching of a single cardiac myocyte immediately prior to contraction and is, therefore, related to the sarcomere length. ... more

Fracture of ductile materials (Dissipated energy)

In ductile materials, a plastic zone develops at the tip of the crack. The plastic loading and unloading cycle near the crack tip leads to the dissipation ... more

Worksheet 306

Calculate the force the biceps muscle must exert to hold the forearm and its load as shown in the figure below, and compare this force with the weight of the forearm plus its load. You may take the data in the figure to be accurate to three significant figures.


(a) The figure shows the forearm of a person holding a book. The biceps exert a force FB to support the weight of the forearm and the book. The triceps are assumed to be relaxed. (b) Here, you can view an approximately equivalent mechanical system with the pivot at the elbow joint

Strategy

There are four forces acting on the forearm and its load (the system of interest). The magnitude of the force of the biceps is FB, that of the elbow joint is FE, that of the weights of the forearm is wa , and its load is wb. Two of these are unknown FB, so that the first condition for equilibrium cannot by itself yield FB . But if we use the second condition and choose the pivot to be at the elbow, then the torque due to FE is zero, and the only unknown becomes FB .

Solution

The torques created by the weights are clockwise relative to the pivot, while the torque created by the biceps is counterclockwise; thus, the second condition for equilibrium (net Ď„ = 0) becomes

Force (Newton's second law)
Torque
Force (Newton's second law)
Torque

Note that sin θ = 1 for all forces, since θ = 90º for all forces. This equation can easily be solved for FB in terms of known quantities,yielding. Entering the known values gives

Mechanical equilibrium - 3=3 Torque example

which yields

Torque
Addition

Now, the combined weight of the arm and its load is known, so that the ratio of the force exerted by the biceps to the total weight is

Division

Discussion

This means that the biceps muscle is exerting a force 7.38 times the weight supported.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Brushed DC electric motor - Voltage balance

A brushed DC motor is an internally commutated electric motor designed to be run from a direct current power source. Brushed motors were the first ... more

Dolbear's Law - in degrees Celsius

Dolbear’s law states the relationship between the air temperature and the rate at which crickets chirp. It was formulated by Amos ... more

Dolbear's Law - in degrees Fahrenheit

Dolbear’s law states the relationship between the air temperature and the rate at which crickets chirp. It was formulated by Amos ... more

Impulse (Velocity)

Impulse is the product of a force and the time, for which it acts. The impulse of a force acting for a given time interval is equal to the change in linear ... more

...can't find what you're looking for?

Create a new formula