'

Search results

Found 1371 matches
Ball Screw - Tensile Compressive Load

A ball screw is a mechanical linear actuator that translates rotational motion to linear motion with little friction. A threaded shaft provides a helical ... more

Boltzmann distribution in mechanics

In statistical mechanics and mathematics, a Boltzmann distribution (also called Gibbs distribution) is a probability distribution, probability measure, or ... more

Worksheet 296

(a) Calculate the buoyant force on 10,000 metric tons (1.00×10 7 kg) of solid steel completely submerged in water, and compare this with the steel’s weight.

(b) What is the maximum buoyant force that water could exert on this same steel if it were shaped into a boat that could displace 1.00×10 5 m 3 of water?

Strategy for (a)

To find the buoyant force, we must find the weight of water displaced. We can do this by using the densities of water and steel given in Table [insert table #] We note that, since the steel is completely submerged, its volume and the water’s volume are the same. Once we know the volume of water, we can find its mass and weight

First, we use the definition of density to find the steel’s volume, and then we substitute values for mass and density. This gives :

Density

Because the steel is completely submerged, this is also the volume of water displaced, Vw. We can now find the mass of water displaced from the relationship between its volume and density, both of which are known. This gives:

Density

By Archimedes’ principle, the weight of water displaced is m w g , so the buoyant force is:

Force (Newton's second law)

The steel’s weight is 9.80×10 7 N , which is much greater than the buoyant force, so the steel will remain submerged.

Strategy for (b)

Here we are given the maximum volume of water the steel boat can displace. The buoyant force is the weight of this volume of water.

The mass of water displaced is found from its relationship to density and volume, both of which are known. That is:

Density

The maximum buoyant force is the weight of this much water, or

Force (Newton's second law)

Discussion

The maximum buoyant force is ten times the weight of the steel, meaning the ship can carry a load nine times its own weight without sinking.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Orbital Eccentricity - gravitational force

The orbital eccentricity of an astronomical object is a parameter that determines the amount by which its orbit around another body deviates from a perfect ... more

Near branch of a hyperbola in polar coordinates with respect to a focal point

In mathematics, a hyperbola is a type of smooth curve, lying in a plane, defined by its geometric properties or by equations for which it is the solution ... more

Orbital Eccentricity

The orbital eccentricity of an astronomical object is a parameter that determines the amount by which its orbit around another body deviates from a perfect ... more

Plane wave ( in the positive x direction)

In the physics of wave propagation, a plane wave is a constant-frequency wave whose wavefronts (surfaces of constant phase) are infinite parallel planes of ... more

Capacitors conected in series

Connected in series, the capacitors each store instantaneous charge build-up equal to that of every other capacitor in the series. The total voltage ... more

Standard Error

The standard error (SE) is the standard deviation of the sampling distribution of a statistic. The term may also be used to refer to an estimate of that ... more

Rolling Resistance Coefficient - alternative

As an alternative to using Crr one can use b, which is a different rolling resistance coefficient or coefficient of rolling friction with dimension of ... more

...can't find what you're looking for?

Create a new formula