'

Search results

Found 1473 matches
Griffith's criterion in Linear elastic fracture mechanics (stress intensity factor)

Fracture mechanics is the field of mechanics concerned with the study of the propagation of cracks in materials. It uses methods of analytical solid ... more

Tier 1 capital

Tier 1 capital is the core measure of a bank’s financial strength from a regulator’s point of view. It is composed of core capital, which ... more

Crest curve length when S>L (Vertical curves for highway design)

Crest vertical curves are curves which, when viewed from the side, are convex upwards. This includes vertical curves at hill crests, but it also includes ... more

Crest curve length when S<L (Vertical curves for highway design)

Crest vertical curves are curves which, when viewed from the side, are convex upwards. This includes vertical curves at hill crests, but it also includes ... more

Future value of an annuity due

Future value of an annuity is the future value of a stream of payments (annuity), assuming the payments are invested at a given rate of interest.
An ... more

Sersic profile (in terms of the half-light radius, Re)

The Sérsic profile (or Sérsic model or Sérsic’s law) is a mathematical function that describes how the intensity I of a galaxy varies with distance ... more

Time period needed to double money

The present value formula can be rearranged logarithmic way to calculate how many years are needed for the value of the deposit to double. ( For the period ... more

Worksheet 296

(a) Calculate the buoyant force on 10,000 metric tons (1.00×10 7 kg) of solid steel completely submerged in water, and compare this with the steel’s weight.

(b) What is the maximum buoyant force that water could exert on this same steel if it were shaped into a boat that could displace 1.00×10 5 m 3 of water?

Strategy for (a)

To find the buoyant force, we must find the weight of water displaced. We can do this by using the densities of water and steel given in Table [insert table #] We note that, since the steel is completely submerged, its volume and the water’s volume are the same. Once we know the volume of water, we can find its mass and weight

First, we use the definition of density to find the steel’s volume, and then we substitute values for mass and density. This gives :

Density

Because the steel is completely submerged, this is also the volume of water displaced, Vw. We can now find the mass of water displaced from the relationship between its volume and density, both of which are known. This gives:

Density

By Archimedes’ principle, the weight of water displaced is m w g , so the buoyant force is:

Force (Newton's second law)

The steel’s weight is 9.80×10 7 N , which is much greater than the buoyant force, so the steel will remain submerged.

Strategy for (b)

Here we are given the maximum volume of water the steel boat can displace. The buoyant force is the weight of this volume of water.

The mass of water displaced is found from its relationship to density and volume, both of which are known. That is:

Density

The maximum buoyant force is the weight of this much water, or

Force (Newton's second law)

Discussion

The maximum buoyant force is ten times the weight of the steel, meaning the ship can carry a load nine times its own weight without sinking.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Motor Resonance Frequency

A stepper motor or step motor or stepping motor is a brushless DC electric motor that divides a full rotation into a number of equal steps. The ... more

Sersic profile

The Sérsic profile (or Sérsic model or Sérsic’s law) is a mathematical function that describes how the intensity I of a galaxy varies with distance ... more

...can't find what you're looking for?

Create a new formula