Motor Resonance Frequency

Description

A stepper motor or step motor or stepping motor is a brushless DC electric motor that divides a full rotation into a number of equal steps. The motor’s position can then be commanded to move and hold at one of these steps without any feedback sensor (an open-loop controller), as long as the motor is carefully sized to the application in respect to torque and speed.

Switched reluctance motors are very large stepping motors with a reduced pole count, and generally are closed-loop commutated.

Ringing and resonance

When the motor moves a single step it overshoots the final resting point and oscillates round this point as it comes to rest. This undesirable ringing is experienced as motor vibration and is more pronounced in unloaded motors. An unloaded or under loaded motor may, and often will, stall if the vibration experienced is enough to cause loss of synchronisation.

Stepper motors have a natural frequency of operation. When the excitation frequency matches this resonance the ringing is more pronounced, steps may be missed, and stalling is more likely. Motor resonance frequency can be calculated from the formula shown here.

Related formulas

Variables

fmotor resonance frequency (hz)
πpi
pnumber of pole pairs (dimensionless)
Mhholding torque (N*m)
Jrrotor inertia (kg*m2)