'

Search results

Found 1107 matches
Orbit Equation

In astrodynamics an orbit equation defines the path of orbiting body around central body relative to , without specifying position as a function of time. ... more

Kepler's equation - X coordinate

In orbital mechanics, Kepler’s equation relates various geometric properties of the orbit of a body subject to a central force.

It was first ... more

Kepler's equation

In orbital mechanics, Kepler’s equation relates various geometric properties of the orbit of a body subject to a central force.

It was first ... more

Kepler's equation - y coordinate

In orbital mechanics, Kepler’s equation relates various geometric properties of the orbit of a body subject to a central force.

It was first ... more

True anomaly

In astronomy, Kepler’s laws of planetary motion are three scientific laws describing the motion of planets around the Sun.

1- The orbit of ... more

Heliocentric distance

In astronomy, Kepler’s laws of planetary motion are three scientific laws describing the motion of planets around the Sun.

1- The orbit of ... more

Orbital Eccentricity

The orbital eccentricity of an astronomical object is a parameter that determines the amount by which its orbit around another body deviates from a perfect ... more

Orbital Eccentricity - gravitational force

The orbital eccentricity of an astronomical object is a parameter that determines the amount by which its orbit around another body deviates from a perfect ... more

Radial Kepler equation

In orbital mechanics, Kepler’s equation relates various geometric properties of the orbit of a body subject to a central force.

It was first ... more

Radius from true anomaly

In celestial mechanics, true anomaly is an angular parameter that defines the position of a body moving along a Keplerian orbit. It is the angle between ... more

True anomaly - as a function of eccentric anomaly, sin form

In celestial mechanics, true anomaly is an angular parameter that defines the position of a body moving along a Keplerian orbit. It is the angle between ... more

True anomaly - as a function of eccentric anomaly, Tan form

In celestial mechanics, true anomaly is an angular parameter that defines the position of a body moving along a Keplerian orbit. It is the angle between ... more

True anomaly - as a function of eccentric anomaly, cos form

In celestial mechanics, true anomaly is an angular parameter that defines the position of a body moving along a Keplerian orbit. It is the angle between ... more

True anomaly - elliptic orbits

In celestial mechanics, true anomaly is an angular parameter that defines the position of a body moving along a Keplerian orbit. It is the angle between ... more

Mean anomaly - function of mean longitude

In celestial mechanics, the mean anomaly is an angle used in calculating the position of a body in an elliptical orbit in the classical two-body problem. ... more

Mean anomaly at epoch

In celestial mechanics, the mean anomaly is an angle used in calculating the position of a body in an elliptical orbit in the classical two-body problem. ... more

Mean anomaly

In celestial mechanics, the mean anomaly is an angle used in calculating the position of a body in an elliptical orbit in the classical two-body problem. ... more

Mean anomaly - function of gravitational parameter

In celestial mechanics, the mean anomaly is an angle used in calculating the position of a body in an elliptical orbit in the classical two-body problem. ... more

True anomaly - circular orbit with zero inclination

In celestial mechanics, true anomaly is an angular parameter that defines the position of a body moving along a Keplerian orbit. It is the angle between ... more

True anomaly - circular orbit

In celestial mechanics, true anomaly is an angular parameter that defines the position of a body moving along a Keplerian orbit. It is the angle between ... more

Near branch of a hyperbola in polar coordinates with respect to a focal point

In mathematics, a hyperbola is a type of smooth curve, lying in a plane, defined by its geometric properties or by equations for which it is the solution ... more

Kepler's First Law

In astronomy, Kepler’s laws of planetary motion are three scientific laws describing the motion of planets around the Sun.

1.The orbit of a ... more

Free-fall time (radial trajectory of an ellipse with an eccentricity of 1 and semi-major axis R/2)

The free-fall time is the characteristic time that would take a body to collapse under its own gravitational attraction, if no other forces existed to ... more

Orbital Period - Ellipse

In astrodynamics or celestial mechanics an elliptic orbit is a Kepler orbit with the eccentricity less than 1; this includes the special case of a circular ... more

Flight path angle (elliptic orbit)

In astrodynamics an elliptic orbit is a Kepler orbit with the eccentricity less than 1; this includes the special case of a circular orbit, with ... more

Conic constant

In geometry, the conic constant (or Schwarzschild constant, after Karl Schwarzschild) is a quantity describing conic sections, and is represented by the ... more

Catenary curve

In physics and geometry, a catenary is the curve that an idealized hanging chain or cable assumes under its own weight when supported only at its ends. The ... more

Free-fall time (Infall of a spherically-symmetric distribution of mass)

The free-fall time is the characteristic time that would take a body to collapse under its own gravitational attraction, if no other forces existed to ... more

Law of sines at the hyperbolic triangle

A hyperbolic triangle is a triangle in the hyperbolic plane. It consists of three line segments called sides or edges and three points called angles or ... more

Hyperbolic law of haversines

In hyperbolic geometry, the law of cosines is a pair of theorems relating the sides and angles of triangles on a hyperbolic plane, analogous to the planar ... more

...can't find what you're looking for?

Create a new formula