'

Search results

Found 1097 matches
Lateral earth passive pressure (Rankine theory for horizontal backfill)

Lateral earth pressure is the pressure that soil exerts in the horizontal direction. Rankine’s theory, is a stress field solution that predicts active and ... more

Lateral earth active pressure (Rankine theory for horizontal backfill)

Lateral earth pressure is the pressure that soil exerts in the horizontal direction. Rankine’s theory, is a stress field solution that predicts active and ... more

Perimeter of a Regular polygon

A regular polygon is a polygon that is equiangular (all angles are equal in measure) and equilateral (all sides have the same length). Regular polygons may ... more

Worksheet 306

Calculate the force the biceps muscle must exert to hold the forearm and its load as shown in the figure below, and compare this force with the weight of the forearm plus its load. You may take the data in the figure to be accurate to three significant figures.


(a) The figure shows the forearm of a person holding a book. The biceps exert a force FB to support the weight of the forearm and the book. The triceps are assumed to be relaxed. (b) Here, you can view an approximately equivalent mechanical system with the pivot at the elbow joint

Strategy

There are four forces acting on the forearm and its load (the system of interest). The magnitude of the force of the biceps is FB, that of the elbow joint is FE, that of the weights of the forearm is wa , and its load is wb. Two of these are unknown FB, so that the first condition for equilibrium cannot by itself yield FB . But if we use the second condition and choose the pivot to be at the elbow, then the torque due to FE is zero, and the only unknown becomes FB .

Solution

The torques created by the weights are clockwise relative to the pivot, while the torque created by the biceps is counterclockwise; thus, the second condition for equilibrium (net τ = 0) becomes

Force (Newton's second law)
Torque
Force (Newton's second law)
Torque

Note that sin θ = 1 for all forces, since θ = 90º for all forces. This equation can easily be solved for FB in terms of known quantities,yielding. Entering the known values gives

Mechanical equilibrium - 3=3 Torque example

which yields

Torque
Addition

Now, the combined weight of the arm and its load is known, so that the ratio of the force exerted by the biceps to the total weight is

Division

Discussion

This means that the biceps muscle is exerting a force 7.38 times the weight supported.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Rayleigh Scattering - Intensity of Light

Rayleigh scattering (pronounced /ˈreɪli/ RAY-lee), named after the British physicist Lord Rayleigh (John William Strutt), is the (dominantly) elastic ... more

Mach wave (angle)

In fluid dynamics, a Mach wave is a pressure wave traveling with the speed of sound caused by a slight change of pressure added to a compressible flow. ... more

Sum of consecutive (triangular) cubes (Nicomachus's theorem)

In number theory, the sum of the first n cubes is the square of the nth triangular number. The sequence of squared triangular numbers is

0, 1, 9, ... more

Eccentricity of the hyperbola

A hyperbola is a type of smooth curve, lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola ... more

Coolidge's formula (area of a general convex quadrilateral)

A quadrilateral is a polygon with four sides (or edges) and four vertices or corners. Coolidge’s formula calculates the area of a general convex ... more

Vertical Curve - Parabolic formula

Vertical Curves are the second of the two important transition elements in geometric design for highways, the first being Horizontal Curves. A vertical ... more

...can't find what you're looking for?

Create a new formula