'

Search results

Found 1333 matches
Antenna Gain

In electromagnetics, an antenna’s power gain or simply gain is a key performance figure which combines the antenna’s directivity and electrical ... more

Worksheet 296

(a) Calculate the buoyant force on 10,000 metric tons (1.00×10 7 kg) of solid steel completely submerged in water, and compare this with the steel’s weight.

(b) What is the maximum buoyant force that water could exert on this same steel if it were shaped into a boat that could displace 1.00×10 5 m 3 of water?

Strategy for (a)

To find the buoyant force, we must find the weight of water displaced. We can do this by using the densities of water and steel given in Table [insert table #] We note that, since the steel is completely submerged, its volume and the water’s volume are the same. Once we know the volume of water, we can find its mass and weight

First, we use the definition of density to find the steel’s volume, and then we substitute values for mass and density. This gives :

Density

Because the steel is completely submerged, this is also the volume of water displaced, Vw. We can now find the mass of water displaced from the relationship between its volume and density, both of which are known. This gives:

Density

By Archimedes’ principle, the weight of water displaced is m w g , so the buoyant force is:

Force (Newton's second law)

The steel’s weight is 9.80×10 7 N , which is much greater than the buoyant force, so the steel will remain submerged.

Strategy for (b)

Here we are given the maximum volume of water the steel boat can displace. The buoyant force is the weight of this volume of water.

The mass of water displaced is found from its relationship to density and volume, both of which are known. That is:

Density

The maximum buoyant force is the weight of this much water, or

Force (Newton's second law)

Discussion

The maximum buoyant force is ten times the weight of the steel, meaning the ship can carry a load nine times its own weight without sinking.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Acceleration of a particle in an electric field

The electric field is a component of the electromagnetic field. It is a vector field, and it is generated by electric charges or time-varying magnetic ... more

Lorentz Factor

The Lorentz factor or Lorentz term is an expression which appears in several equations in special relativity. It arises from deriving the Lorentz ... more

Gain - Parabolic Antenna (also conical)

In electromagnetics, an antenna’s power gain or simply gain is a key performance figure which combines the antenna’s directivity and electrical ... more

Nq bearing capacity factor

Karl von Terzaghi was the first to present a comprehensive theory for the evaluation of the ultimate bearing capacity of rough shallow foundations. This ... more

Nγ bearing capacity factor (Terzaghi's theory)

Karl von Terzaghi was the first to present a comprehensive theory for the evaluation of the ultimate bearing capacity of rough shallow foundations. This ... more

Nc bearing capacity factor

Karl von Terzaghi was the first to present a comprehensive theory for the evaluation of the ultimate bearing capacity of rough shallow foundations. This ... more

Uniform Circular Motion position (Y - coordinate)

In physics, circular motion is a movement of an object along the circumference of a circle or rotation along a circular path. It can be uniform, with ... more

Uniform Circular Motion position (X - coordinate)

In physics, circular motion is a movement of an object along the circumference of a circle or rotation along a circular path. It can be uniform, with ... more

...can't find what you're looking for?

Create a new formula