'

Gain - Parabolic Antenna (also conical)

Description

In electromagnetics, an antenna’s power gain or simply gain is a key performance figure which combines the antenna’s directivity and electrical efficiency. As a transmitting antenna, the figure describes how well the antenna converts input power into radio waves headed in a specified direction. As a receiving antenna, the figure describes how well the antenna converts radio waves arriving from a specified direction into electrical power. When no direction is specified, “gain” is understood to refer to the peak value of the gain. A plot of the gain as a function of direction is called the radiation pattern.

Antenna gain is usually defined as the ratio of the power produced by the antenna from a far-field source on the antenna’s beam axis to the power produced by a hypothetical lossless isotropic antenna, which is equally sensitive to signals from all directions. Usually this ratio is expressed in decibels, and these units are referred to as “decibels-isotropic” (dBi). An alternative definition compares the antenna to the power received by a lossless half-wave dipole antenna, in which case the units are written as dBd. Since a lossless dipole antenna has a gain of 2.15 dBi, the relation between these units is: gain in dBd = gain in dBi – 2.15 dB . For a given frequency, the antenna’s effective area is proportional to the power gain. An antenna’s effective length is proportional to the square root of the antenna’s gain for a particular frequency and radiation resistance. Due to reciprocity, the gain of any antenna when receiving is equal to its gain when transmitting.

Directive gain or directivity is a different measure which does not take an antenna’s electrical efficiency into account. This term is sometimes more relevant in the case of a receiving antenna where one is concerned mainly with the ability of an antenna to receive signals from one direction while rejecting interfering signals coming from a different direction.

Related formulas

Variables

Gantenna's power gain (dB) (dimensionless)
πpi
ddiameter of the parabolic reflector, if it is circular (m)
λwavelength of the radio waves (m)
eAdimensionless parameter between 0 and 1 called the aperture efficiency. The aperture efficiency of typical parabolic antennas is 0.55 to 0.70. (dimensionless)