'

Search results

Found 1704 matches
Counter EMF of a motor

Counter-electromotive force (abbreviated counter EMF or simply CEMF), also known as back electromotive ... more

Worksheet 333

A typical small rescue helicopter, like the one in the Figure below, has four blades, each is 4.00 m long and has a mass of 50.0 kg. The blades can be approximated as thin rods that rotate about one end of an axis perpendicular to their length. The helicopter has a total loaded mass of 1000 kg. (a) Calculate the rotational kinetic energy in the blades when they rotate at 300 rpm. (b) Calculate the translational kinetic energy of the helicopter when it flies at 20.0 m/s, and compare it with the rotational energy in the blades. (c) To what height could the helicopter be raised if all of the rotational kinetic energy could be used to lift it?


The first image shows how helicopters store large amounts of rotational kinetic energy in their blades. This energy must be put into the blades before takeoff and maintained until the end of the flight. The engines do not have enough power to simultaneously provide lift and put significant rotational energy into the blades.
The second image shows a helicopter from the Auckland Westpac Rescue Helicopter Service. Over 50,000 lives have been saved since its operations beginning in 1973. Here, a water rescue operation is shown. (credit: 111 Emergency, Flickr)

Strategy

Rotational and translational kinetic energies can be calculated from their definitions. The last part of the problem relates to the idea that energy can change form, in this case from rotational kinetic energy to gravitational potential energy.

Solution for (a)

We must convert the angular velocity to radians per second and calculate the moment of inertia before we can find Er . The angular velocity ω for 1 r.p.m is

Angular velocity

and for 300 r.p.m

Multiplication

The moment of inertia of one blade will be that of a thin rod rotated about its end.

Moment of Inertia - Rod end

The total I is four times this moment of inertia, because there are four blades. Thus,

Multiplication

and so The rotational kinetic energy is

Rotational energy

Solution for (b)

Translational kinetic energy is defined as

Kinetic energy ( related to the object 's velocity )

To compare kinetic energies, we take the ratio of translational kinetic energy to rotational kinetic energy. This ratio is

Division

Solution for (c)

At the maximum height, all rotational kinetic energy will have been converted to gravitational energy. To find this height, we equate those two energies:

Potential energy

Discussion

The ratio of translational energy to rotational kinetic energy is only 0.380. This ratio tells us that most of the kinetic energy of the helicopter is in its spinning blades—something you probably would not suspect. The 53.7 m height to which the helicopter could be raised with the rotational kinetic energy is also impressive, again emphasizing the amount of rotational kinetic energy in the blades.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Babinet's principle - in Radiofrequency Structures

In physics, Babinet’s principle states that the diffraction pattern from an opaque body is identical to that from a hole of the same size and shape ... more

Lensmaker's equation

A lens is a transmissive optical device which affects the focusing of a light beam through refraction. A simple lens consists of a single piece of ... more

Planck temperature

Planck temperature, denoted by TP, is the unit of temperature in the system of natural units known as Planck units.

It serves as the ... more

Mass - Energy equivalence

In physics, mass–energy equivalence states that anything having mass has an equivalent amount of energy and vice versa, with these fundamental quantities ... more

Frequency (Doppler effect for a moving black body)

Black-body radiation is the thermal electromagnetic radiation within or surrounding a body in thermodynamic equilibrium with its environment, or emitted by ... more

Electromagnetic mass (transverse mass) by Lorentz

Due to the self-induction effect, electrostatic energy behaves as having some sort of momentum and “apparent” electromagnetic mass, which can increase the ... more

2nd Equation of Motion for Rotation - Final Angle

In mathematical physics, equations of motion are equations that describe the behaviour of a physical system in terms of its motion as a function of ... more

Temprature of a black body

Black-body radiation is the thermal electromagnetic radiation within or surrounding a body in thermodynamic equilibrium with its environment, or emitted by ... more

...can't find what you're looking for?

Create a new formula