'

Search results

Found 852 matches
Kepler's Third Law - with Radial Acceleration

In astronomy, Kepler’s laws of planetary motion are three scientific laws describing the motion of planets around the Sun.

1.The orbit of a ... more

Kepler's Third Law - modern formulation

In astronomy, Kepler’s laws of planetary motion are three scientific laws describing the motion of planets around the Sun.

1.The orbit of a ... more

Parallel Plate Capacitor (considering the material)

The capacitance of a two parallel plates capacitor both of area A separated by a distance d is calculated by the area of overlap of the two plates, ... more

First Townsend ionization coefficient

The Townsend discharge is a gas ionization process where free electrons, accelerated by a sufficiently strong electric field, give rise to electrical ... more

Spring constant

Hooke’s law is a principle of physics that states that the force F needed to extend or compress a spring by some distance X is proportional to that ... more

Magnetic potential energy

The energy of a magnetic moment “m” in an externally produced magnetic field “B”. Is related to the distance between magnetic ... more

Properties of concrete - modulus of elasticity

Concrete has relatively high compressive strength, but significantly lower tensile strength. As a result, without compensating, concrete would almost ... more

Slant height of a right regular pyramid

Slant height is the height of any slant triangle of the regular pyramid, or the distance from the apex, down the side, to a point on the base ... more

Mean anomaly - function of mean longitude

In celestial mechanics, the mean anomaly is an angle used in calculating the position of a body in an elliptical orbit in the classical two-body problem. ... more

Worksheet 306

Calculate the force the biceps muscle must exert to hold the forearm and its load as shown in the figure below, and compare this force with the weight of the forearm plus its load. You may take the data in the figure to be accurate to three significant figures.


(a) The figure shows the forearm of a person holding a book. The biceps exert a force FB to support the weight of the forearm and the book. The triceps are assumed to be relaxed. (b) Here, you can view an approximately equivalent mechanical system with the pivot at the elbow joint

Strategy

There are four forces acting on the forearm and its load (the system of interest). The magnitude of the force of the biceps is FB, that of the elbow joint is FE, that of the weights of the forearm is wa , and its load is wb. Two of these are unknown FB, so that the first condition for equilibrium cannot by itself yield FB . But if we use the second condition and choose the pivot to be at the elbow, then the torque due to FE is zero, and the only unknown becomes FB .

Solution

The torques created by the weights are clockwise relative to the pivot, while the torque created by the biceps is counterclockwise; thus, the second condition for equilibrium (net τ = 0) becomes

Force (Newton's second law)
Torque
Force (Newton's second law)
Torque

Note that sin θ = 1 for all forces, since θ = 90º for all forces. This equation can easily be solved for FB in terms of known quantities,yielding. Entering the known values gives

Mechanical equilibrium - 3=3 Torque example

which yields

Torque
Addition

Now, the combined weight of the arm and its load is known, so that the ratio of the force exerted by the biceps to the total weight is

Division

Discussion

This means that the biceps muscle is exerting a force 7.38 times the weight supported.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

...can't find what you're looking for?

Create a new formula