'

Search results

Found 674 matches
Law of Conservation of Linear Momentum - 2 particles example

In classical mechanics, linear momentum or translational momentum (pl. momenta; SI unit kg m/s, or equivalently, N s) is the product of the mass and ... more

Steadily rotating crank ( displacement of the end of the connecting rod )

A crank is an arm attached at right angles to a rotating shaft by which reciprocating motion is imparted to or received from the shaft. It is used to ... more

Radiation Pressure by Absorption (using classical electromagnetism: waves)

Radiation pressure is the pressure exerted upon any surface exposed to electromagnetic radiation. Radiation pressure implies an interaction between ... more

Link Budget - Received Power

A link budget is accounting of all of the gains and losses from the transmitter, through the medium (free space, cable, waveguide, fiber, etc.) to the ... more

R-value (insulation) of a multi-layered installation

Formula first contributed by:
zfyl

The R-value is a measure of thermal resistance, or ability of heat to transfer from hot ... more

Vertical Pressure variation of the Atmosphere of Earth( exponential function of height)

Vertical pressure variation is the variation in pressure as a function of elevation. The vertical variation is especially significant, as it results from ... more

Terrestrial Time

Terrestrial Time (TT) is a modern astronomical time standard defined by the International Astronomical Union, primarily for time-measurements of ... more

Wavelength - Sinusoidal Wave

In physics, the wavelength of a sinusoidal wave is the spatial period of the wave—the distance over which the wave’s shape repeats, and the inverse ... more

Worksheet 306

Calculate the force the biceps muscle must exert to hold the forearm and its load as shown in the figure below, and compare this force with the weight of the forearm plus its load. You may take the data in the figure to be accurate to three significant figures.


(a) The figure shows the forearm of a person holding a book. The biceps exert a force FB to support the weight of the forearm and the book. The triceps are assumed to be relaxed. (b) Here, you can view an approximately equivalent mechanical system with the pivot at the elbow joint

Strategy

There are four forces acting on the forearm and its load (the system of interest). The magnitude of the force of the biceps is FB, that of the elbow joint is FE, that of the weights of the forearm is wa , and its load is wb. Two of these are unknown FB, so that the first condition for equilibrium cannot by itself yield FB . But if we use the second condition and choose the pivot to be at the elbow, then the torque due to FE is zero, and the only unknown becomes FB .

Solution

The torques created by the weights are clockwise relative to the pivot, while the torque created by the biceps is counterclockwise; thus, the second condition for equilibrium (net τ = 0) becomes

Force (Newton's second law)
Torque
Force (Newton's second law)
Torque

Note that sin θ = 1 for all forces, since θ = 90º for all forces. This equation can easily be solved for FB in terms of known quantities,yielding. Entering the known values gives

Mechanical equilibrium - 3=3 Torque example

which yields

Torque
Addition

Now, the combined weight of the arm and its load is known, so that the ratio of the force exerted by the biceps to the total weight is

Division

Discussion

This means that the biceps muscle is exerting a force 7.38 times the weight supported.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Law of Conservation of Linear Momentum - 3 particles example

In classical mechanics, linear momentum or translational momentum (pl. momenta; SI unit kg m/s, or equivalently, N s) is the product of the mass and ... more

...can't find what you're looking for?

Create a new formula