'

Search results

Found 1450 matches
Monoclinic crystal system (Unit cell's volume)

In crystallography, the monoclinic crystal system is one of the seven lattice point groups. A crystal system is described by three vectors. In the ... more

Worksheet 334

In a video game design, a map shows the location of other characters relative to the player, who is situated at the origin, and the direction they are facing. A character currently shows on the map at coordinates (-3, 5). If the player rotates counterclockwise by 20 degrees, then the objects in the map will correspondingly rotate 20 degrees clockwise. Find the new coordinates of the character.

To rotate the position of the character, we can imagine it as a point on a circle, and we will change the angle of the point by 20 degrees. To do so, we first need to find the radius of this circle and the original angle.

Drawing a right triangle inside the circle, we can find the radius using the Pythagorean Theorem:

Pythagorean theorem (right triangle)

To find the angle, we need to decide first if we are going to find the acute angle of the triangle, the reference angle, or if we are going to find the angle measured in standard position. While either approach will work, in this case we will do the latter. By applying the cosine function and using our given information we get

Cosine function
Subtraction

While there are two angles that have this cosine value, the angle of 120.964 degrees is in the second quadrant as desired, so it is the angle we were looking for.

Rotating the point clockwise by 20 degrees, the angle of the point will decrease to 100.964 degrees. We can then evaluate the coordinates of the rotated point

For x axis:

Cosine function

For y axis:

Sine function

The coordinates of the character on the rotated map will be (-1.109, 5.725)

Reference : PreCalculus: An Investigation of Functions,Edition 1.4 © 2014 David Lippman and Melonie Rasmussen
http://www.opentextbookstore.com/precalc/
Creative Commons License : http://creativecommons.org/licenses/by-sa/3.0/us/

Sum of the circumradius and the inradius of a right triangle

Right triangle or right-angled triangle is a triangle in which one angle is a right angle (that is, a 90-degree angle). The incircle or inscribed circle of ... more

Length of a side of an inscribed square in a triangle

Every acute triangle has three inscribed squares (squares in its interior such that all four of a square’s vertices lie on a side of the triangle, so ... more

Radius of the incircle of a right triangle

Right triangle or right-angled triangle is a triangle in which one angle is a right angle (that is, a 90-degree angle). The incircle or inscribed circle ... more

Law of sines ( related to the sides of the triangle)

Law of sines is an equation relating the lengths of the sides of any shaped triangle to the sines of its angles. The law of sines can be used to compute ... more

Right Triangle (sides)

A right triangle (American English) or right-angled triangle (British English) is a triangle in which one angle is a right angle (that is, a 90-degree ... more

One of the legs of a right triangle related to the inradius and the other leg.

Right triangle or right-angled triangle is a triangle in which one angle is a right angle (that is, a 90-degree angle). The incircle or inscribed circle of ... more

Pyramid frustum's volume (n-sided regular polygon bases)

A pyramid frustum is the portion of a pyramid that lies between two parallel planes cutting it. The volume of a pyramid frustum, whose bases are n-sided ... more

Triangulation (surveying)

In surveying, triangulation is the process of determining the location of a point by measuring only angles to it from known points at either end of a fixed ... more

...can't find what you're looking for?

Create a new formula