'

Search results

Found 1556 matches
Worksheet 306

Calculate the force the biceps muscle must exert to hold the forearm and its load as shown in the figure below, and compare this force with the weight of the forearm plus its load. You may take the data in the figure to be accurate to three significant figures.


(a) The figure shows the forearm of a person holding a book. The biceps exert a force FB to support the weight of the forearm and the book. The triceps are assumed to be relaxed. (b) Here, you can view an approximately equivalent mechanical system with the pivot at the elbow joint

Strategy

There are four forces acting on the forearm and its load (the system of interest). The magnitude of the force of the biceps is FB, that of the elbow joint is FE, that of the weights of the forearm is wa , and its load is wb. Two of these are unknown FB, so that the first condition for equilibrium cannot by itself yield FB . But if we use the second condition and choose the pivot to be at the elbow, then the torque due to FE is zero, and the only unknown becomes FB .

Solution

The torques created by the weights are clockwise relative to the pivot, while the torque created by the biceps is counterclockwise; thus, the second condition for equilibrium (net τ = 0) becomes

Force (Newton's second law)
Torque
Force (Newton's second law)
Torque

Note that sin θ = 1 for all forces, since θ = 90º for all forces. This equation can easily be solved for FB in terms of known quantities,yielding. Entering the known values gives

Mechanical equilibrium - 3=3 Torque example

which yields

Torque
Addition

Now, the combined weight of the arm and its load is known, so that the ratio of the force exerted by the biceps to the total weight is

Division

Discussion

This means that the biceps muscle is exerting a force 7.38 times the weight supported.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Vertical Wind Profile - Power Law

The design of buildings must account for wind loads, and these are affected by wind shear. For engineering purposes, a power law wind speed profile may be ... more

Load and Resistance Factor Design (LRFD) - Load combinations (eq5)

In structural engineering, a structure is a body or combination of pieces of rigid bodies in space to form a fitness system for supporting loads. ... more

Rayleigh number (for the mushy zone of a solidifying alloy - related to isotherm speed)

In fluid mechanics, the Rayleigh number (Ra) for a fluid is a dimensionless number associated with buoyancy-driven flow, also known as free convection or ... more

Probability that an electron hits an ion at ionization process

Ionization is the process by which an atom or a molecule acquires a negative or positive charge by gaining or losing electrons to form ions. If an electron ... more

Indicated airspeed (IAS) - compressible fluid

Indicated airspeed (IAS) is the airspeed read directly from the airspeed indicator (ASI) on an ... more

Indicated airspeed (IAS) - incompressible fluid

Indicated airspeed (IAS) is the airspeed read directly from the airspeed indicator (ASI) on an ... more

Hot Air Balloon Lift

The hot air balloon is the oldest successful human-carrying flight technology. The first hot-air balloon flown in the United States was launched from the ... more

Hydrostatic Pressure - simplified version

In a fluid at rest, all frictional stresses vanish and the state of stress of the system is called hydrostatic.For water and other liquids, this integral ... more

Desired radius of a curve

The equation for the desired radius of a curve, takes into account the factors of speed and superelevation (e). This equation can be algebraically ... more

...can't find what you're looking for?

Create a new formula