'

Search results

Found 1116 matches
Luminosity of a Star

In astronomy, luminosity is the total amount of energy emitted by a star, galaxy, or other astronomical object per unit time. It is related to brightness, ... more

Allowable Strength Design Load combination (eq5a)

In structural engineering, a structure is a body or combination of pieces of rigid bodies in space to form a fitness system for supporting loads. ... more

Allowable Strength Design Load combination (eq5b)

In structural engineering, a structure is a body or combination of pieces of rigid bodies in space to form a fitness system for supporting loads. ... more

Sum of the infinite terms

A geometric progression, also known as a geometric sequence, is a sequence of numbers where each term after the first is found by multiplying the previous ... more

Shear stress (acting on the bed of a channel)

For a channel that is at an angle a from horizontal, the shear component of the stress acting on the bed , which is the component acting ... more

Shear rate at the inner wall of a Newtonian fluid (flowing within a pipe)

A Newtonian fluid is a fluid in which the viscous stresses arising from its flow, at every point, are proportional to the local strain rate — the rate of ... more

Worksheet 289

Prior to manned space flights, rocket sleds were used to test aircraft, missile equipment, and physiological effects on human subjects at high speeds. They consisted of a platform that was mounted on one or two rails and propelled by several rockets. Calculate the magnitude of force exerted by each rocket, called its thrust T , for the four-rocket propulsion system shown in the Figure below. The sled’s initial acceleration is 49 m/s 2, the mass of the system is 2100 kg, and the force of friction opposing the motion is known to be 650 N.

A sled experiences a rocket thrust that accelerates it to the right.Each rocket creates an identical thrust T . As in other situations where there is only horizontal acceleration, the vertical forces cancel. The ground exerts an upward force N on the system that is equal in magnitude and opposite in direction to its weight,w.The system here is the sled, its rockets, and rider, so none of the forces between these objects are considered. The arrow representing friction ( f ) is drawn larger than scale.
Assumptions: The mass of the Sled remains steady throughout the operation

Strategy

Although there are forces acting vertically and horizontally, we assume the vertical forces cancel since there is no vertical acceleration. This leaves us with only horizontal forces and a simpler one-dimensional problem. Directions are indicated with plus or minus signs, with right taken as the positive direction. See the free-body diagram in the figure.

Solution

Since acceleration, mass, and the force of friction are given, we start with Newton’s second law and look for ways to find the thrust of the engines. Since we have defined the direction of the force and acceleration as acting “to the right,” we need to consider only the magnitudes of these quantities in the calculations. Hence we begin with

Force (Newton's second law)

Fnet is the net force along the horizontal direction, m is the rocket’s mass and a the acceleration.

We can see from the Figure at the top, that the engine thrusts add, while friction opposes the thrust.

Subtraction

Tt is the total thrust from the 4 rockets, Fnet the net force along the horizontal direction and Ff the force of friction.

Finally, since there are 4 rockets, we calculate the thrust that each one provides:

Division

T is the individual Thrust of each engine, b is the number of rocket engines

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

First Townsend ionization coefficient

The Townsend discharge is a gas ionization process where free electrons, accelerated by a sufficiently strong electric field, give rise to electrical ... more

Gain - Parabolic Antenna (also conical)

In electromagnetics, an antenna’s power gain or simply gain is a key performance figure which combines the antenna’s directivity and electrical ... more

Antenna Gain - Relative to a Dipole

In electromagnetics, an antenna’s power gain or simply gain is a key performance figure which combines the antenna’s directivity and electrical ... more

...can't find what you're looking for?

Create a new formula