'

Search results

Found 1813 matches
Position of the piston of an engine with respect to crank angle

A piston is the moving component that is contained by a cylinder and is made gas-tight by piston rings. In an engine, its purpose is to transfer force from ... more

Velocity of the reciprocating motion of the piston with respect to crank angle

A piston is the moving component that is contained by a cylinder and is made gas-tight by piston rings. In an engine, its purpose is to transfer force from ... more

Acceleration of reciprocating piston with respect to crank angle

A piston is the moving component that is contained by a cylinder and is made gas-tight by piston rings. In an engine, its purpose is to transfer force from ... more

Piston stroke (displacement )

Almost all reciprocating engines use cranks (with connecting rods) to transform the back-and-forth motion of the pistons into rotary motion. The cranks are ... more

Rod and piston-to-stroke ratio

In a reciprocating piston engine, the connecting rod or conrod connects the piston to the crank or crankshaft. Together with the crank, they form a simple ... more

Knuckle joint (Maximum bending stress)

A knuckle joint is a mechanical joint used to connect two rods which are under a tensile load, when there is a requirement of small amount of flexibility, ... more

Knuckle joint (Moment about axis XX)

A knuckle joint is a mechanical joint used to connect two rods which are under a tensile load, when there is a requirement of small amount of flexibility, ... more

Engine displacement

Engine displacement is the volume swept by all the pistons inside the cylinders of a reciprocating engine in a single movement from top dead centre (... more

Shear resistance of a pin

This formula calculates the shear resistance of a pin in a pin and plate connection.
From EN 1993-1-8 (2005) (English): Eurocode 3: Design of steel ... more

Geometrical requirements for pin ended members - Given thickness

This formula calculates the geometrical requirements for pin ended members, specifically the minimum required distances from the pin hole edge to the plate ... more

Pneumatic Cylinder Intstroke

Pneumatic cylinders (sometimes known as air cylinders) are mechanical devices which use the power of compressed gas to produce a force in a reciprocating ... more

Maximum axial load that a long, slender, ideal column can carry without buckling

Column or pillar in architecture and structural engineering is a structural element that transmits, through compression, the weight of the structure above ... more

Ball Screw - Leading Angle

A ball screw is a mechanical linear actuator that translates rotational motion to linear motion with little friction. A threaded shaft provides a helical ... more

Ball Screw - Buckling Load

A ball screw is a mechanical linear actuator that translates rotational motion to linear motion with little friction. A threaded shaft provides a helical ... more

Pneumatic Cylinder Outstroke

Pneumatic cylinders (sometimes known as air cylinders) are mechanical devices which use the power of compressed gas to produce a force in a reciprocating ... more

Moment of Inertia - Rod end

Moment of inertia is the mass property of a rigid body that determines the torque needed for a desired angular acceleration about an axis of rotation. ... more

Ball Screw - Preload Drag Torque

A ball screw is a mechanical linear actuator that translates rotational motion to linear motion with little friction. A threaded shaft provides a helical ... more

Turnbuckle (The direct shear stress induced in screw thread)

A mechanical joint is a part of a machine which is used to connect another mechanical part or mechanism. Mechanical joints may be temporary or permanent. ... more

Ball Screw - Tensile Compressive Load

A ball screw is a mechanical linear actuator that translates rotational motion to linear motion with little friction. A threaded shaft provides a helical ... more

Worksheet 333

A typical small rescue helicopter, like the one in the Figure below, has four blades, each is 4.00 m long and has a mass of 50.0 kg. The blades can be approximated as thin rods that rotate about one end of an axis perpendicular to their length. The helicopter has a total loaded mass of 1000 kg. (a) Calculate the rotational kinetic energy in the blades when they rotate at 300 rpm. (b) Calculate the translational kinetic energy of the helicopter when it flies at 20.0 m/s, and compare it with the rotational energy in the blades. (c) To what height could the helicopter be raised if all of the rotational kinetic energy could be used to lift it?


The first image shows how helicopters store large amounts of rotational kinetic energy in their blades. This energy must be put into the blades before takeoff and maintained until the end of the flight. The engines do not have enough power to simultaneously provide lift and put significant rotational energy into the blades.
The second image shows a helicopter from the Auckland Westpac Rescue Helicopter Service. Over 50,000 lives have been saved since its operations beginning in 1973. Here, a water rescue operation is shown. (credit: 111 Emergency, Flickr)

Strategy

Rotational and translational kinetic energies can be calculated from their definitions. The last part of the problem relates to the idea that energy can change form, in this case from rotational kinetic energy to gravitational potential energy.

Solution for (a)

We must convert the angular velocity to radians per second and calculate the moment of inertia before we can find Er . The angular velocity ω for 1 r.p.m is

Angular velocity

and for 300 r.p.m

Multiplication

The moment of inertia of one blade will be that of a thin rod rotated about its end.

Moment of Inertia - Rod end

The total I is four times this moment of inertia, because there are four blades. Thus,

Multiplication

and so The rotational kinetic energy is

Rotational energy

Solution for (b)

Translational kinetic energy is defined as

Kinetic energy ( related to the object 's velocity )

To compare kinetic energies, we take the ratio of translational kinetic energy to rotational kinetic energy. This ratio is

Division

Solution for (c)

At the maximum height, all rotational kinetic energy will have been converted to gravitational energy. To find this height, we equate those two energies:

Potential energy

Discussion

The ratio of translational energy to rotational kinetic energy is only 0.380. This ratio tells us that most of the kinetic energy of the helicopter is in its spinning blades—something you probably would not suspect. The 53.7 m height to which the helicopter could be raised with the rotational kinetic energy is also impressive, again emphasizing the amount of rotational kinetic energy in the blades.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Ball Screw - Frictional Resistance

A ball screw is a mechanical linear actuator that translates rotational motion to linear motion with little friction. A threaded shaft provides a helical ... more

Ball Screw - Driving Torque

A ball screw is a mechanical linear actuator that translates rotational motion to linear motion with little friction. A threaded shaft provides a helical ... more

Conical pendulum

A conical pendulum is a weight (or bob) fixed on the end of a string (or rod) suspended from a pivot. Its construction is similar to an ordinary pendulum; ... more

Compression ratio

The compression ratio of an internal-combustion engine or external combustion engine is a value that represents the ratio of the volume of its combustion ... more

Torque of Compound pendulum

A compound pendulum (or physical pendulum) is one where the rod is not massless, and may have extended size; that is, an arbitrarily shaped rigid body ... more

Pre-ignition cylinder pressure of an engine

Measuring the compression pressure of an engine, with a pressure gauge connected to the spark plug opening, gives an indication of the engine’s state ... more

Tensile force for non-undercut threaded rod

A threaded rod, also known as a stud, is a relatively long rod that is threaded on both ends; the thread may extend along the complete length of the ... more

Tensile force for undercut threaded rod

A threaded rod, also known as a stud, is a relatively long rod that is threaded on both ends; the thread may extend along the complete length of the ... more

Torsional Pendulum (Period)

Torsion balances, torsion pendulums and balance wheels are examples of torsional harmonic oscillators that can oscillate with a rotational motion about the ... more

Αxial stiffness for an element in tension

The stiffness of a body is a measure of the resistance offered by an elastic body to deformation.
Tension describes the pulling force exerted by each ... more

...can't find what you're looking for?

Create a new formula