'

Search results

Found 1264 matches
K1 for Danish-Kumar Solution

A Bingham plastic is a viscoplastic material that behaves as a rigid body at low stresses but flows as a viscous fluid at high stress. It is named after ... more

Buckling Coefficient

In science, buckling is a mathematical instability that leads to a failure mode.

When a structure is subjected to compressive stress, buckling may ... more

Petroff's Law - Torque required to shear the lubricant film (for small radial loads)

In the design of fluid bearings, the Sommerfeld number (S), or bearing characteristic number, is a dimensionless quantity used extensively in hydrodynamic ... more

Borda–Carnot equation (sudden expansion of a horizontal pipe)

In fluid dynamics the Borda–Carnot equation is an empirical description of the mechanical energy losses of the fluid due to a (sudden) flow expansion. The ... more

Knoop hardness test

The Knoop hardness test /kəˈnuːp/ is a microhardness test – a test for mechanical hardness used particularly for very brittle materials or thin sheets, ... more

NTU method - actual heat transfer rate (q) (relative to the hot fluid)

The Number of Transfer Units (NTU) Method is used to calculate the rate of heat transfer in heat exchangers (especially counter ... more

NTU method - actual heat transfer rate (q) (relative to the cold fluid)

The Number of Transfer Units (NTU) Method is used to calculate the rate of heat transfer in heat exchangers (especially counter ... more

Danish-Kumar Solution (for Buckingham-Reiner equation)

A Bingham plastic is a viscoplastic material that behaves as a rigid body at low stresses but flows as a viscous fluid at high stress. It is named after ... more

Nose cone ( center of the spherical nose cap)

The nose cone section of any vehicle or body meant to travel through a compressible fluid medium (such as a rocket or aircraft, missile or bullet) is ... more

Heat flow in electronics - maximum power dissipate

The heat flow can be modelled by analogy to an electrical circuit where heat flow is represented by current, temperatures are represented by voltages, heat ... more

...can't find what you're looking for?

Create a new formula