'

Search results

Found 551 matches
Hydrostatic weighing

Hydrostatic weighing, also referred to as “underwater weighing,” “hydrostatic body composition analysis,” and ... more

Settling velocity (Stokes law)

Stokes’ law can be used to calculate the viscosity of a fluid. Stokes’ law is also important in the study for Viscous Drag , Terminal Velocity ... more

Self-buckling critical height ( for a free-standing, vertical column)

Column or pillar in architecture and structural engineering is a structural element that transmits, through compression, the weight of the structure above ... more

Freefall in Uniform Gravitational Field with Air Resistance (velocity)

Free fall is any motion of a body where its weight is the only force acting upon it. In Uniform gravitational field with air resistance the air resistance ... more

Birch's Law

Birch’s law establishes a linear relation of the compressional wave velocity of rocks and minerals of a constant average atomic weight with density ... more

Youden's J statistic

Youden’s J statistic (also called Youden’s index) is a single statistic that captures the performance of a diagnostic test. Its value ranges ... more

Rayleigh number (for geophysical applications - related to bottom heating of the mantle from the core)

In fluid mechanics, the Rayleigh number (Ra) for a fluid is a dimensionless number associated with buoyancy-driven flow, also known as free convection or ... more

Worksheet 296

(a) Calculate the buoyant force on 10,000 metric tons (1.00×10 7 kg) of solid steel completely submerged in water, and compare this with the steel’s weight.

(b) What is the maximum buoyant force that water could exert on this same steel if it were shaped into a boat that could displace 1.00×10 5 m 3 of water?

Strategy for (a)

To find the buoyant force, we must find the weight of water displaced. We can do this by using the densities of water and steel given in Table [insert table #] We note that, since the steel is completely submerged, its volume and the water’s volume are the same. Once we know the volume of water, we can find its mass and weight

First, we use the definition of density to find the steel’s volume, and then we substitute values for mass and density. This gives :

Density

Because the steel is completely submerged, this is also the volume of water displaced, Vw. We can now find the mass of water displaced from the relationship between its volume and density, both of which are known. This gives:

Density

By Archimedes’ principle, the weight of water displaced is m w g , so the buoyant force is:

Force (Newton's second law)

The steel’s weight is 9.80×10 7 N , which is much greater than the buoyant force, so the steel will remain submerged.

Strategy for (b)

Here we are given the maximum volume of water the steel boat can displace. The buoyant force is the weight of this volume of water.

The mass of water displaced is found from its relationship to density and volume, both of which are known. That is:

Density

The maximum buoyant force is the weight of this much water, or

Force (Newton's second law)

Discussion

The maximum buoyant force is ten times the weight of the steel, meaning the ship can carry a load nine times its own weight without sinking.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Uniform gravitational field without air resistance (velocity)

Free fall is any motion of a body where its weight is the only force acting upon it. Falling in air, as long as the force of gravity on the object is much ... more

Burning Time

This formula calculates the duration of propulsion system burn which is required to achieve a desired ΔV.

... more

...can't find what you're looking for?

Create a new formula