'

Search results

Found 519 matches
Maszara model DCB test (surface fracture energy)

Wafer bonds are commonly characterized by three important encapsulation parameters: bond strength, hermeticity of encapsulation and bonding induced ... more

Elastic deflection to any point along the span of an end loaded cantilever beam

In engineering, deflection is the degree to which a structural element is displaced under a load. The deflection at any point along the span of an end ... more

Elastic deflection at any point along the span of a uniformly loaded cantilevered beam

In engineering, deflection is the degree to which a structural element is displaced under a load. The deflection at any point along the span of a uniformly ... more

Elastic deflection of a uniformly loaded cantilever beam

Elastic deflection is the degree to which a structural element is displaced under a load.
The deflection, at the free end, of a cantilevered beam ... more

Semi-Elliptic Laminated Leaf Spring (Stiffness)

Leaf spring, commonly used for the suspension in wheeled vehicles. The term is also used to refer to a bundled set of leaf springs. As the spring flexes, ... more

Critical buckling stress of a column

Column or pillar in architecture and structural engineering is a structural element that transmits, through compression, the weight of the structure above ... more

Worksheet 316

Calculate the change in length of the upper leg bone (the femur) when a 70.0 kg man supports 62.0 kg of his mass on it, assuming the bone to be equivalent to a uniform rod that is 45.0 cm long and 2.00 cm in radius.

Strategy

The force is equal to the weight supported:

Force (Newton's second law)

and the cross-sectional area of the upper leg bone(femur) is:

Disk area

To find the change in length we use the Young’s modulus formula. The Young’s modulus reference value for a bone under compression is known to be 9×109 N/m2. Now,all quantities except ΔL are known. Thus:

Young's Modulus

Discussion

This small change in length seems reasonable, consistent with our experience that bones are rigid. In fact, even the rather large forces encountered during strenuous physical activity do not compress or bend bones by large amounts. Although bone is rigid compared with fat or muscle, several of the substances listed in Table 5.3(see reference below) have larger values of Young’s modulus Y . In other words, they are more rigid.

Reference:
This worksheet is a modified version of Example 5.4 page 188 found in :
OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Micro chevron (MC) test (critical energy release rate)

The wafer bond characterization is based on different methods and tests. Wafer bonds are commonly characterized by three important encapsulation ... more

Strain energy release (Irwin's modification for plane strain)

A fracture is the separation of an object or material into two, or more, pieces under the action of stress.There are three ways of applying a force to ... more

Convective heat transfer coefficient with Nusselt number for Internal/turbulent flow

Although convective heat transfer can be derived analytically through dimensional analysis, exact analysis of the boundary layer, approximate integral ... more

...can't find what you're looking for?

Create a new formula