'

Search results

Found 1045 matches
Critical Buckling Stress of a Column with Buckling Coefficient

Column or pillar in architecture and structural engineering is a structural element that transmits, through compression, the weight of the structure above ... more

Worksheet 306

Calculate the force the biceps muscle must exert to hold the forearm and its load as shown in the figure below, and compare this force with the weight of the forearm plus its load. You may take the data in the figure to be accurate to three significant figures.


(a) The figure shows the forearm of a person holding a book. The biceps exert a force FB to support the weight of the forearm and the book. The triceps are assumed to be relaxed. (b) Here, you can view an approximately equivalent mechanical system with the pivot at the elbow joint

Strategy

There are four forces acting on the forearm and its load (the system of interest). The magnitude of the force of the biceps is FB, that of the elbow joint is FE, that of the weights of the forearm is wa , and its load is wb. Two of these are unknown FB, so that the first condition for equilibrium cannot by itself yield FB . But if we use the second condition and choose the pivot to be at the elbow, then the torque due to FE is zero, and the only unknown becomes FB .

Solution

The torques created by the weights are clockwise relative to the pivot, while the torque created by the biceps is counterclockwise; thus, the second condition for equilibrium (net τ = 0) becomes

Force (Newton's second law)
Torque
Force (Newton's second law)
Torque

Note that sin θ = 1 for all forces, since θ = 90º for all forces. This equation can easily be solved for FB in terms of known quantities,yielding. Entering the known values gives

Mechanical equilibrium - 3=3 Torque example

which yields

Torque
Addition

Now, the combined weight of the arm and its load is known, so that the ratio of the force exerted by the biceps to the total weight is

Division

Discussion

This means that the biceps muscle is exerting a force 7.38 times the weight supported.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Buckling Coefficient

In science, buckling is a mathematical instability that leads to a failure mode.

When a structure is subjected to compressive stress, buckling may ... more

Gearing reduction ratio

Harmonic Drive is the brand name of strain wave gear trademarked by the Harmonic Drive company, and invented in 1957 by C.W. Musser.

It is very ... more

Griffith's criterion in Linear elastic fracture mechanics (stress intensity factor)

Fracture mechanics is the field of mechanics concerned with the study of the propagation of cracks in materials. It uses methods of analytical solid ... more

Exponential Decay (with half-life)

Half-life is the amount of time required for the amount of something to fall to half its initial value. The term is very commonly used in nuclear physics ... more

Supersonic/Hypersonic Lift-to-Drag Ratio

In aerodynamics, the lift-to-drag ratio, or L/D ratio, is the amount of lift generated by a wing or vehicle, divided by the drag it creates by moving ... more

Drainage Hooghoudt's equation

A drainage equation is an equation describing the relation between depth and spacing of parallel subsurface drains, depth of the watertable, depth and ... more

Richardson Number - related to Reynolds number

The Richardson number (Ri) is named after Lewis Fry Richardson (1881 – 1953). It is the dimensionless number that expresses the ratio of potential to ... more

S-wave Velocity

A type of elastic wave, the S-wave, secondary wave, or shear wave (sometimes called an elastic S-wave) is one of the two main types of elastic body waves, ... more

...can't find what you're looking for?

Create a new formula