'

Search results

Found 1024 matches
Wind Power - Betz's law

Wind power is the conversion of wind energy into a useful form of energy, such as using wind turbines to produce electrical power, windmills for mechanical ... more

Energy required for a chemical rocket

Spacecraft propulsion is any method used to accelerate spacecraft and artificial satellites. Space propulsion or in-space propulsion exclusively deals with ... more

Total force on a contact area between a rigid conical indenter and an elastic half-space related to the contact radius

Contact mechanics is the study of the deformation of solids that touch each other at one or more points. Hertzian contact stress refers to the localized ... more

Specific Impulse by weight

Specific impulse (usually abbreviated Isp) is a measure of the efficiency of rocket and jet engines. By definition, it is the impulse delivered per unit of ... more

Johnson-Kendall-Roberts (JKR) model of elastic contact between two spheres ( contact radius)

Contact mechanics is the study of the deformation of solids that touch each other at one or more points.When two solid surfaces are brought into close ... more

Thrust to Power

Thrust is a reaction force described quantitatively by Newton’s second and third laws.
The power needed to generate thrust and the force of the ... more

Worksheet 306

Calculate the force the biceps muscle must exert to hold the forearm and its load as shown in the figure below, and compare this force with the weight of the forearm plus its load. You may take the data in the figure to be accurate to three significant figures.


(a) The figure shows the forearm of a person holding a book. The biceps exert a force FB to support the weight of the forearm and the book. The triceps are assumed to be relaxed. (b) Here, you can view an approximately equivalent mechanical system with the pivot at the elbow joint

Strategy

There are four forces acting on the forearm and its load (the system of interest). The magnitude of the force of the biceps is FB, that of the elbow joint is FE, that of the weights of the forearm is wa , and its load is wb. Two of these are unknown FB, so that the first condition for equilibrium cannot by itself yield FB . But if we use the second condition and choose the pivot to be at the elbow, then the torque due to FE is zero, and the only unknown becomes FB .

Solution

The torques created by the weights are clockwise relative to the pivot, while the torque created by the biceps is counterclockwise; thus, the second condition for equilibrium (net τ = 0) becomes

Force (Newton's second law)
Torque
Force (Newton's second law)
Torque

Note that sin θ = 1 for all forces, since θ = 90º for all forces. This equation can easily be solved for FB in terms of known quantities,yielding. Entering the known values gives

Mechanical equilibrium - 3=3 Torque example

which yields

Torque
Addition

Now, the combined weight of the arm and its load is known, so that the ratio of the force exerted by the biceps to the total weight is

Division

Discussion

This means that the biceps muscle is exerting a force 7.38 times the weight supported.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Wheel flop

Wheel flop refers to steering behavior in which a bicycle or motorcycle tends to turn more than expected due to the front wheel “flopping” over ... more

Bradley model of the force applied on a contact area between two spheres

Contact mechanics is the study of the deformation of solids that touch each other at one or more points. When two solid surfaces are brought into close ... more

Tip Speed ratio

The tip-speed ratio, λ, or TSR for wind turbines is the ratio between the tangential speed of the tip of a blade and the actual ... more

...can't find what you're looking for?

Create a new formula