'

Search results

Found 1585 matches
Möbius transformation (Möbius function)

In geometry and complex analysis, a Möbius transformation of the plane is a rational function of one complex variable. A Möbius transformation can be ... more

Nγ bearing capacity factor (Terzaghi's theory)

Karl von Terzaghi was the first to present a comprehensive theory for the evaluation of the ultimate bearing capacity of rough shallow foundations. This ... more

Nc bearing capacity factor

Karl von Terzaghi was the first to present a comprehensive theory for the evaluation of the ultimate bearing capacity of rough shallow foundations. This ... more

Radial acceleration in circular motion ( related to period)

Uniform circular motion, that is constant speed along a circular path, is an example of a body experiencing acceleration resulting in velocity of a ... more

Centripetal(Centrifugal) Acceleration

Acceleration, in physics, is the rate of change of velocity of an object. An object’s acceleration is the net result of any and all forces acting on ... more

Black hole surface gravity

The surface gravity, g, of an astronomical or other object is the gravitational acceleration experienced at its surface. The surface gravity may be thought ... more

Speed of sound in sea water (Mackenzie empirical equation)

The speed of sound is the distance travelled per unit of time by a sound wave propagating through an elastic medium. The speed of sound in seawater depends ... more

Energy of a Photon

A photon is an elementary particle, the quantum of light and all other forms of electromagnetic radiation, and the force carrier for the electromagnetic ... more

Worksheet 296

(a) Calculate the buoyant force on 10,000 metric tons (1.00×10 7 kg) of solid steel completely submerged in water, and compare this with the steel’s weight.

(b) What is the maximum buoyant force that water could exert on this same steel if it were shaped into a boat that could displace 1.00×10 5 m 3 of water?

Strategy for (a)

To find the buoyant force, we must find the weight of water displaced. We can do this by using the densities of water and steel given in Table [insert table #] We note that, since the steel is completely submerged, its volume and the water’s volume are the same. Once we know the volume of water, we can find its mass and weight

First, we use the definition of density to find the steel’s volume, and then we substitute values for mass and density. This gives :

Density

Because the steel is completely submerged, this is also the volume of water displaced, Vw. We can now find the mass of water displaced from the relationship between its volume and density, both of which are known. This gives:

Density

By Archimedes’ principle, the weight of water displaced is m w g , so the buoyant force is:

Force (Newton's second law)

The steel’s weight is 9.80×10 7 N , which is much greater than the buoyant force, so the steel will remain submerged.

Strategy for (b)

Here we are given the maximum volume of water the steel boat can displace. The buoyant force is the weight of this volume of water.

The mass of water displaced is found from its relationship to density and volume, both of which are known. That is:

Density

The maximum buoyant force is the weight of this much water, or

Force (Newton's second law)

Discussion

The maximum buoyant force is ten times the weight of the steel, meaning the ship can carry a load nine times its own weight without sinking.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Declining Balance Method (depreciation rate)

n financial accounting, an asset is an economic resource. Anything tangible or intangible that is capable of being owned or controlled to produce value and ... more

...can't find what you're looking for?

Create a new formula

Search criteria:

Similar to formula
Category