'

Search results

Found 1125 matches
Exponential Decay (with half-life)

Half-life is the amount of time required for the amount of something to fall to half its initial value. The term is very commonly used in nuclear physics ... more

Law of Conservation of Linear Momentum - 3 particles example

In classical mechanics, linear momentum or translational momentum (pl. momenta; SI unit kg m/s, or equivalently, N s) is the product of the mass and ... more

Dittus-Boelter equation - Nusselt number

In heat transfer at a boundary (surface) within a fluid, the Nusselt number (Nu) is the ratio of convective to conductive heat transfer across (normal to) ... more

Bearing capacity - Terzaghi's Theory (Variable Nq)

In geotechnical engineering, bearing capacity is the capacity of soil to support the loads applied to the ground. The bearing capacity of soil is the ... more

Reynolds number (for motion of an object in a viscous fluid)

In fluid mechanics, the Reynolds number is used to help predict if flow will be laminar or turbulent. We know that the flow around a smooth, streamlined ... more

Worksheet 341

The awe‐inspiring Great Pyramid of Cheops was built more than 4500 years ago. Its square base, originally 230 m on a side, covered 13.1 acres, and it was 146 m high (H), with a mass of about 7×10^9 kg. (The pyramid’s dimensions are slightly different today due to quarrying and some sagging). Historians estimate that 20,000 workers spent 20 years to construct it, working 12-hour days, 330 days per year.

a) Calculate the gravitational potential energy stored in the pyramid, given its center of mass is at one-fourth its height.

Division
Potential energy

b) Only a fraction of the workers lifted blocks; most were involved in support services such as building ramps, bringing food and water, and hauling blocks to the site. Calculate the efficiency of the workers who did the lifting, assuming there were 1000 of them and they consumed food energy at the rate of 300 Kcal/hour.

first we calculate the number of hours worked per year.

Multiplication

then we calculate the number of hours worked in the 20 years.

Multiplication

Then we calculate the energy consumed in 20 years knowing the energy consumed per hour and the total hours worked in 20 years.

Multiplication
Multiplication

The efficiency is the resulting potential energy divided by the consumed energy.

Division
Auger electron spectroscopy - Energetics of Auger transitions (more rigorous model)

Auger electron spectroscopy is a common analytical technique used specifically in the study of surfaces and, more generally, in the area of materials ... more

Vickers hardness number

The Vickers hardness test was developed in 1921 by Robert L. Smith and George E. Sandland at Vickers Ltd as an alternative to the Brinell method to measure ... more

Reynolds number (for a flow in a tube)

In fluid mechanics, the Reynolds number is used to help predict if flow will be laminar or turbulent. We know that flow in a very smooth tube, streamlined ... more

Static air temperature - from TAS

The true airspeed (TAS; also KTAS, for knots true airspeed) of an aircraft is the speed of the aircraft relative to the airmass ... more

...can't find what you're looking for?

Create a new formula