'

Search results

Found 1428 matches
Larmor formula

The Larmor formula is used to calculate the total power radiated by a non relativistic point charge as it accelerates or decelerates. This is used in the ... more

Prandtl–Meyer expansion fan - last Mach line angle

A supersonic expansion fan, technically known as Prandtl–Meyer expansion fan, is a centred expansion process that occurs when a supersonic flow turns ... more

Area Moment of Inertia - Filled Ellipse

The second moment of area, also known as moment of inertia of plane area, area moment of inertia, polar moment of area or second area moment, is a ... more

Elastic collision (final velocity of the second of the two bodies in elastic collision)

An elastic collision is an encounter between two bodies in which the total kinetic energy of the two bodies after the encounter is equal to their total ... more

Hydraulic gradient

Hydraulic head or piezometric head is a specific measurement of liquid pressure above a geodetic datum. The hydraulic gradient is a vector gradient between ... more

Elastic collision (final velocity of one of the two bodies in elastic collision)

An elastic collision is an encounter between two bodies in which the total kinetic energy of the two bodies after the encounter is equal to their total ... more

Worksheet 296

(a) Calculate the buoyant force on 10,000 metric tons (1.00×10 7 kg) of solid steel completely submerged in water, and compare this with the steel’s weight.

(b) What is the maximum buoyant force that water could exert on this same steel if it were shaped into a boat that could displace 1.00×10 5 m 3 of water?

Strategy for (a)

To find the buoyant force, we must find the weight of water displaced. We can do this by using the densities of water and steel given in Table [insert table #] We note that, since the steel is completely submerged, its volume and the water’s volume are the same. Once we know the volume of water, we can find its mass and weight

First, we use the definition of density to find the steel’s volume, and then we substitute values for mass and density. This gives :

Density

Because the steel is completely submerged, this is also the volume of water displaced, Vw. We can now find the mass of water displaced from the relationship between its volume and density, both of which are known. This gives:

Density

By Archimedes’ principle, the weight of water displaced is m w g , so the buoyant force is:

Force (Newton's second law)

The steel’s weight is 9.80×10 7 N , which is much greater than the buoyant force, so the steel will remain submerged.

Strategy for (b)

Here we are given the maximum volume of water the steel boat can displace. The buoyant force is the weight of this volume of water.

The mass of water displaced is found from its relationship to density and volume, both of which are known. That is:

Density

The maximum buoyant force is the weight of this much water, or

Force (Newton's second law)

Discussion

The maximum buoyant force is ten times the weight of the steel, meaning the ship can carry a load nine times its own weight without sinking.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Area Moment of Inertia - Filled Right Triangle

The second moment of area, also known as moment of inertia of plane area, area moment of inertia, polar moment of area or second area moment, is a ... more

Achromatic doublet (lens power)

An achromatic lens or achromat is a lens that is designed to limit the effects of chromatic and spherical aberration. Achromatic lenses are corrected to ... more

Kelvin–Helmholtz mechanism

The Kelvin–Helmholtz mechanism is an astronomical process that occurs when the surface of a star or a planet cools. The cooling causes the pressure to ... more

...can't find what you're looking for?

Create a new formula