'

Search results

Found 873 matches
Settling velocity

The terminal velocity of a particle which is falling in the viscous fluid under its own weight due to gravity.
Generally, for small particles (laminar ... more

3rd Equation of Motion for Rotation - Final Angle : acceleration independent

In mathematical physics, equations of motion are equations that describe the behaviour of a physical system in terms of its motion as a function of ... more

1st Equation of Motion for Rotation - Angular Velocity

In mathematical physics, equations of motion are equations that describe the behaviour of a physical system in terms of its motion as a function of ... more

Worksheet 306

Calculate the force the biceps muscle must exert to hold the forearm and its load as shown in the figure below, and compare this force with the weight of the forearm plus its load. You may take the data in the figure to be accurate to three significant figures.


(a) The figure shows the forearm of a person holding a book. The biceps exert a force FB to support the weight of the forearm and the book. The triceps are assumed to be relaxed. (b) Here, you can view an approximately equivalent mechanical system with the pivot at the elbow joint

Strategy

There are four forces acting on the forearm and its load (the system of interest). The magnitude of the force of the biceps is FB, that of the elbow joint is FE, that of the weights of the forearm is wa , and its load is wb. Two of these are unknown FB, so that the first condition for equilibrium cannot by itself yield FB . But if we use the second condition and choose the pivot to be at the elbow, then the torque due to FE is zero, and the only unknown becomes FB .

Solution

The torques created by the weights are clockwise relative to the pivot, while the torque created by the biceps is counterclockwise; thus, the second condition for equilibrium (net τ = 0) becomes

Force (Newton's second law)
Torque
Force (Newton's second law)
Torque

Note that sin θ = 1 for all forces, since θ = 90º for all forces. This equation can easily be solved for FB in terms of known quantities,yielding. Entering the known values gives

Mechanical equilibrium - 3=3 Torque example

which yields

Torque
Addition

Now, the combined weight of the arm and its load is known, so that the ratio of the force exerted by the biceps to the total weight is

Division

Discussion

This means that the biceps muscle is exerting a force 7.38 times the weight supported.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Speed of Sound in Plasma

The speed of sound is the distance travelled per unit of time by a sound wave propagating through an elastic medium.
The speed of sound in a plasma ... more

Critical speed for a leadscrew

The critical speed is the speed that excites the natural frequency of the screw. For a steel leadscrew or steel ballscrew, the critical speed is ... more

Heat flux (Advection)

Heat transfer describes the exchange of thermal energy, between physical systems depending on the temperature and pressure, by dissipating heat. The ... more

Richardson's law

Thermionic emission is the thermally induced flow of charge carriers from a surface or over a potential-energy barrier. This occurs because the thermal ... more

Root mean square speed

Root-mean-square speed is the measure of the speed of particles in a gas that is most convenient for problem solving within the kinetic theory of gases. It ... more

Mean Orbital Speed

The orbital speed of a body, generally a planet, a natural satellite, an artificial satellite, or a multiple star, is the speed at which it orbits around ... more

...can't find what you're looking for?

Create a new formula