'

Search results

Found 1284 matches
Stress (mechanical)

Stress is a physical quantity that expresses the internal forces that neighboring particles of a continuous material exert on each other. Any strain ... more

Settling velocity

The terminal velocity of a particle which is falling in the viscous fluid under its own weight due to gravity.
Generally, for small particles (laminar ... more

Maximum deflection distance of an off-center loaded beam supported by two simple supports

In engineering, deflection is the degree to which a structural element is displaced under a load.
This maximum deflection occurs at a distance x_1 ... more

West number

The West number is an empirical parameter used to characterize the performance of Stirling engines and other Stirling systems. A Stirling engine is a heat ... more

Simple Pendulum (Period)

Simple Pendulum is a mass (or bob) on the end of a weightless string, which, when initially displaced, will swing back and forth under the influence of ... more

Allowable Strength Design Load combination (eq4)

In structural engineering, a structure is a body or combination of pieces of rigid bodies in space to form a fitness system for supporting loads. ... more

Allowable Strength Design Load combination (eq6a)

In structural engineering, a structure is a body or combination of pieces of rigid bodies in space to form a fitness system for supporting loads. ... more

Allowable Strength Design Load combination (eq6b)

In structural engineering, a structure is a body or combination of pieces of rigid bodies in space to form a fitness system for supporting loads. ... more

Total indentation depth of a contact area between a rigid cylinder and an elastic half-space

Contact mechanics is the study of the deformation of solids that touch each other at one or more points. Hertzian contact stress refers to the localized ... more

Worksheet 306

Calculate the force the biceps muscle must exert to hold the forearm and its load as shown in the figure below, and compare this force with the weight of the forearm plus its load. You may take the data in the figure to be accurate to three significant figures.


(a) The figure shows the forearm of a person holding a book. The biceps exert a force FB to support the weight of the forearm and the book. The triceps are assumed to be relaxed. (b) Here, you can view an approximately equivalent mechanical system with the pivot at the elbow joint

Strategy

There are four forces acting on the forearm and its load (the system of interest). The magnitude of the force of the biceps is FB, that of the elbow joint is FE, that of the weights of the forearm is wa , and its load is wb. Two of these are unknown FB, so that the first condition for equilibrium cannot by itself yield FB . But if we use the second condition and choose the pivot to be at the elbow, then the torque due to FE is zero, and the only unknown becomes FB .

Solution

The torques created by the weights are clockwise relative to the pivot, while the torque created by the biceps is counterclockwise; thus, the second condition for equilibrium (net τ = 0) becomes

Force (Newton's second law)
Torque
Force (Newton's second law)
Torque

Note that sin θ = 1 for all forces, since θ = 90º for all forces. This equation can easily be solved for FB in terms of known quantities,yielding. Entering the known values gives

Mechanical equilibrium - 3=3 Torque example

which yields

Torque
Addition

Now, the combined weight of the arm and its load is known, so that the ratio of the force exerted by the biceps to the total weight is

Division

Discussion

This means that the biceps muscle is exerting a force 7.38 times the weight supported.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

...can't find what you're looking for?

Create a new formula