'

Search results

Found 1758 matches
Worksheet 316

Calculate the change in length of the upper leg bone (the femur) when a 70.0 kg man supports 62.0 kg of his mass on it, assuming the bone to be equivalent to a uniform rod that is 45.0 cm long and 2.00 cm in radius.

Strategy

The force is equal to the weight supported:

Force (Newton's second law)

and the cross-sectional area of the upper leg bone(femur) is:

Disk area

To find the change in length we use the Young’s modulus formula. The Young’s modulus reference value for a bone under compression is known to be 9×109 N/m2. Now,all quantities except ΔL are known. Thus:

Young's Modulus

Discussion

This small change in length seems reasonable, consistent with our experience that bones are rigid. In fact, even the rather large forces encountered during strenuous physical activity do not compress or bend bones by large amounts. Although bone is rigid compared with fat or muscle, several of the substances listed in Table 5.3(see reference below) have larger values of Young’s modulus Y . In other words, they are more rigid.

Reference:
This worksheet is a modified version of Example 5.4 page 188 found in :
OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Conic constant

In geometry, the conic constant (or Schwarzschild constant, after Karl Schwarzschild) is a quantity describing conic sections, and is represented by the ... more

Mass - Energy equivalence

In physics, mass–energy equivalence states that anything having mass has an equivalent amount of energy and vice versa, with these fundamental quantities ... more

Fin Area on a Rocket

The size of the fins controls a rocket’s stability and the amount of weather cocking (turning into the wind). The best way to determine final fin ... more

Vertical Forces at the wheels for a bicycle (rear wheel)

Though longitudinally stable when stationary, a bike may become longitudinally unstable under sufficient acceleration or deceleration. The normal ... more

Vertical Forces at the wheels for a bicycle (front wheel)

Though longitudinally stable when stationary, a bike may become longitudinally unstable under sufficient acceleration or deceleration. The normal ... more

Gyromagnetic ratio for a classical rotating body

In physics, the gyromagnetic ratio (also sometimes known as the magnetogyric ratio in other disciplines) of a particle or system is the ratio of its ... more

Solar Cell - Fill Factor

Solar cell efficiency is the ratio of the electrical output of a solar cell to the incident energy in the form of sunlight. The energy conversion ... more

Compound pendulum ( ordinary frequency )

A compound pendulum is a body formed from an assembly of particles or continuous shapes that rotates rigidly around a pivot. Its moments of inertia is the ... more

Electromagnetic mass (transverse mass) by Lorentz

Due to the self-induction effect, electrostatic energy behaves as having some sort of momentum and “apparent” electromagnetic mass, which can increase the ... more

...can't find what you're looking for?

Create a new formula