'

Search results

Found 916 matches
Angular frequency (De Broglie dispersion relation in nonrelativistic limit)

Elementary particles, atomic nuclei, atoms, and even molecules behave in some contexts as matter waves. According to the de Broglie, angular frequency and ... more

Gravitational Potential

In classical mechanics, the gravitational potential at a location is equal to the work (energy transferred) per unit mass that is done by the force of ... more

Cryoscopic constant

Freezing-point depression describes the process in which adding a solute to a solvent decreases the freezing point of the solvent. freezing-point ... more

London penetration depth

In superconductors, the London penetration depth (usually denoted as λ or λ_L) characterizes the distance to which a magnetic field penetrates into a ... more

Hubble's Law

Hubble’s law is the name for the observation in physical cosmology that: (1) objects observed in deep space (extragalactic space, ~10 megaparsecs or ... more

Worksheet 316

Calculate the change in length of the upper leg bone (the femur) when a 70.0 kg man supports 62.0 kg of his mass on it, assuming the bone to be equivalent to a uniform rod that is 45.0 cm long and 2.00 cm in radius.

Strategy

The force is equal to the weight supported:

Force (Newton's second law)

and the cross-sectional area of the upper leg bone(femur) is:

Disk area

To find the change in length we use the Young’s modulus formula. The Young’s modulus reference value for a bone under compression is known to be 9×109 N/m2. Now,all quantities except ΔL are known. Thus:

Young's Modulus

Discussion

This small change in length seems reasonable, consistent with our experience that bones are rigid. In fact, even the rather large forces encountered during strenuous physical activity do not compress or bend bones by large amounts. Although bone is rigid compared with fat or muscle, several of the substances listed in Table 5.3(see reference below) have larger values of Young’s modulus Y . In other words, they are more rigid.

Reference:
This worksheet is a modified version of Example 5.4 page 188 found in :
OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Standard Gravitational Parameter

In celestial mechanics, the standard gravitational parameter μ of a celestial body is the product of the gravitational constant G and the mass M of the ... more

Fall Impact Force

In lead climbing using a dynamic rope, the fall factor (f) is the ratio of the height (h) a climber falls before the climber’s rope begins to stretch ... more

2nd Equation of Motion for Rotation - Final Angle

In mathematical physics, equations of motion are equations that describe the behaviour of a physical system in terms of its motion as a function of ... more

3rd Equation of Motion for Rotation - Final Angle : acceleration independent

In mathematical physics, equations of motion are equations that describe the behaviour of a physical system in terms of its motion as a function of ... more

...can't find what you're looking for?

Create a new formula