'

Search results

Found 611 matches
Probability that an electron hits an ion at ionization process

Ionization is the process by which an atom or a molecule acquires a negative or positive charge by gaining or losing electrons to form ions. If an electron ... more

Critical Hall parameter (weakly ionized gas)

The electrothermal instability (also known as the ionization instability) is a magnetohydrodynamic (MHD) instability appearing in ... more

Auger electron spectroscopy - Electron impact cross-section (account for matrix effects)

Auger electron spectroscopy is a common analytical technique used specifically in the study of surfaces and, more generally, in the area of materials ... more

Critical Hall parameter (fully ionized gas)

The electrothermal instability (also known as the ionization instability) is a magnetohydrodynamic (MHD) instability appearing in ... more

Albedo - correlation with Absolute Magnitude and Diameter

Albedo (/ælˈbiːdoʊ/), or reflection coefficient, derived from Latin albedo “whiteness” (or reflected sunlight) in turn from albus ... more

Worksheet 296

(a) Calculate the buoyant force on 10,000 metric tons (1.00×10 7 kg) of solid steel completely submerged in water, and compare this with the steel’s weight.

(b) What is the maximum buoyant force that water could exert on this same steel if it were shaped into a boat that could displace 1.00×10 5 m 3 of water?

Strategy for (a)

To find the buoyant force, we must find the weight of water displaced. We can do this by using the densities of water and steel given in Table [insert table #] We note that, since the steel is completely submerged, its volume and the water’s volume are the same. Once we know the volume of water, we can find its mass and weight

First, we use the definition of density to find the steel’s volume, and then we substitute values for mass and density. This gives :

Density

Because the steel is completely submerged, this is also the volume of water displaced, Vw. We can now find the mass of water displaced from the relationship between its volume and density, both of which are known. This gives:

Density

By Archimedes’ principle, the weight of water displaced is m w g , so the buoyant force is:

Force (Newton's second law)

The steel’s weight is 9.80×10 7 N , which is much greater than the buoyant force, so the steel will remain submerged.

Strategy for (b)

Here we are given the maximum volume of water the steel boat can displace. The buoyant force is the weight of this volume of water.

The mass of water displaced is found from its relationship to density and volume, both of which are known. That is:

Density

The maximum buoyant force is the weight of this much water, or

Force (Newton's second law)

Discussion

The maximum buoyant force is ten times the weight of the steel, meaning the ship can carry a load nine times its own weight without sinking.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Hawking Radiation - Temperature of a black body (or a black hole)

A black body is an idealized physical body that absorbs all incident electromagnetic radiation, regardless of frequency or angle of incidence. A black hole ... more

Gearing reduction ratio

Harmonic Drive is the brand name of strain wave gear trademarked by the Harmonic Drive company, and invented in 1957 by C.W. Musser.

It is very ... more

Epicyclic gearing (overal gear ratio)

An epicyclic gear train consists of two gears mounted so that the center of one gear revolves around the center of the other. A carrier connects the ... more

Properties of concrete - modulus of elasticity

Concrete has relatively high compressive strength, but significantly lower tensile strength. As a result, without compensating, concrete would almost ... more

...can't find what you're looking for?

Create a new formula