'

Search results

Found 978 matches
Saturated Adiabatic Lapse Rate

The lapse rate is defined as the rate at which atmospheric temperature decreases with increase in altitude. The terminology arises from the word lapse in ... more

Weight transfer ( or load transfer)

In the automobile industry, weight transfer customarily refers to the change in load borne by different wheels during acceleration and the change in ... more

Biot number (mass transfer)

The Biot number (Bi) is a dimensionless quantity used in heat transfer calculations. Gives a simple index of the ratio of the heat transfer resistances ... more

Wet bulk density of soil (total bulk density)

Bulk density is a property of powders, granules, and other “divided” solids, especially used in reference to mineral components (soil, gravel), ... more

Discharge Coefficient

In a nozzle or other constriction, the discharge coefficient (also known as coefficient of discharge) is the ratio of the actual discharge to the ... more

Speed of Sound (air, ideal gases) - relative to molar mass

The speed of sound is the distance travelled per unit time by a sound wave propagating through an elastic medium. The SI unit of the speed of sound is the ... more

Worksheet 306

Calculate the force the biceps muscle must exert to hold the forearm and its load as shown in the figure below, and compare this force with the weight of the forearm plus its load. You may take the data in the figure to be accurate to three significant figures.


(a) The figure shows the forearm of a person holding a book. The biceps exert a force FB to support the weight of the forearm and the book. The triceps are assumed to be relaxed. (b) Here, you can view an approximately equivalent mechanical system with the pivot at the elbow joint

Strategy

There are four forces acting on the forearm and its load (the system of interest). The magnitude of the force of the biceps is FB, that of the elbow joint is FE, that of the weights of the forearm is wa , and its load is wb. Two of these are unknown FB, so that the first condition for equilibrium cannot by itself yield FB . But if we use the second condition and choose the pivot to be at the elbow, then the torque due to FE is zero, and the only unknown becomes FB .

Solution

The torques created by the weights are clockwise relative to the pivot, while the torque created by the biceps is counterclockwise; thus, the second condition for equilibrium (net Ï„ = 0) becomes

Force (Newton's second law)
Torque
Force (Newton's second law)
Torque

Note that sin θ = 1 for all forces, since θ = 90º for all forces. This equation can easily be solved for FB in terms of known quantities,yielding. Entering the known values gives

Mechanical equilibrium - 3=3 Torque example

which yields

Torque
Addition

Now, the combined weight of the arm and its load is known, so that the ratio of the force exerted by the biceps to the total weight is

Division

Discussion

This means that the biceps muscle is exerting a force 7.38 times the weight supported.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Vertical Forces at the wheels for a bicycle (rear wheel)

Though longitudinally stable when stationary, a bike may become longitudinally unstable under sufficient acceleration or deceleration. The normal ... more

Vertical Forces at the wheels for a bicycle (front wheel)

Though longitudinally stable when stationary, a bike may become longitudinally unstable under sufficient acceleration or deceleration. The normal ... more

Faraday's 1st Law of Electrolysis

The mass of a substance altered at an electrode during electrolysis is directly proportional to the quantity of electricity transferred at that electrode. ... more

...can't find what you're looking for?

Create a new formula