'

Search results

Found 1034 matches
Torsion constant (Rectangle)

In solid mechanics, torsion is the twisting of an object due to an applied torque. The torsion constant is a geometrical property of a bar’s cross-section ... more

Torsion constant (Ellipse -cross-sectional shape)

In solid mechanics, torsion is the twisting of an object due to an applied torque. The torsion constant is a geometrical property of a bar’s cross-section ... more

Torsion constant (Circle -cross-sectional shape)

In solid mechanics, torsion is the twisting of an object due to an applied torque. The torsion constant is a geometrical property of a bar’s ... more

Torsion

In solid mechanics, torsion is the twisting of an object due to an applied torque. It is expressed in newton metres (N·m) or foot-pound force (ft·lbf). In ... more

Torsional Pendulum (Period)

Torsion balances, torsion pendulums and balance wheels are examples of torsional harmonic oscillators that can oscillate with a rotational motion about the ... more

Moment of Inertia - I-Beam (Ideal cross section)

An I-beam, also known as H-beam, W-beam (for “wide flange”), Universal Beam (UB), Rolled Steel Joist (RSJ), or ... more

Second moment of area - I-Beam (W-section)

An I-beam, also known as H-beam, W-beam (for “wide flange”), Universal Beam (UB), Rolled Steel Joist (RSJ), or ... more

Tuning fork

A tuning fork is an acoustic resonator in the form of a two-pronged fork with the prongs (tines) formed from a U-shaped bar of elastic metal (usually ... more

Force between two bar magnets

The Gilbert model assumes that the magnetic forces between magnets are due to magnetic charges near the poles. This model produces good approximations that ... more

Impact shear

Shear stress, is defined as the component of stress coplanar with a material cross section. Shear stress arises from the force vector component parallel to ... more

Tuning fork (cylindrical prongs)

A tuning fork is an acoustic resonator in the form of a two-pronged fork with the prongs (tines) formed from a U-shaped bar of elastic metal (usually ... more

Flow coefficient

The flow coefficient of a device is a relative measure of its efficiency at allowing fluid flow. It describes the relationship between the pressure drop ... more

Coefficient B(T,P) - used in UNESCO equation

The coefficient B(T,P) used in the UNESCO equation, speed of sound in sea water), depends on the temperature and the pressure

... more

Coefficient D(T,P) - used in UNESCO equation

The coefficient D(T,P) used in the UNESCO equation, speed of sound in sea water), depends on the temperature and the pressure

... more

Coefficient A(T,P) - used in UNESCO equation

The coefficient A(T,P) used in the UNESCO equation, speed of sound in sea water), depends on the temperature and the pressure

... more

Coefficient Cw(T,P) - used in UNESCO equation

The coefficient Cw (used in the UNESCO equation, speed of sound in sea water), depends on the temperature and the pressure

... more

Concrete electrical resistivity (rebars method)

Rebar (short for reinforcing bar), is a steel bar or mesh of steel wires used as a tension device in reinforced concrete and reinforced masonry structures ... more

Magnetic dipole moment (Ampère model)

Far away from a magnet, its magnetic field is almost always described (to a good approximation) by a dipole field characterized by its total magnetic ... more

Magnetic dipole moment (Gilbert model)

Far away from a magnet, its magnetic field is almost always described (to a good approximation) by a dipole field characterized by its total magnetic ... more

Self-inductance factor

Self inductance factor of a solenoid depends on the number of turns, the cross section area, the length of the solenoid and the material within the solenoid

... more

Tensile force for non-undercut threaded rod

A threaded rod, also known as a stud, is a relatively long rod that is threaded on both ends; the thread may extend along the complete length of the ... more

Tensile force for undercut threaded rod

A threaded rod, also known as a stud, is a relatively long rod that is threaded on both ends; the thread may extend along the complete length of the ... more

Closed magnetic circuit ( Lorentz force )

An electromagnet is a type of magnet in which the magnetic field is produced by electric current. The magnetic field disappears when the current is turned ... more

Turnbuckle (The direct shear stress induced in screw thread)

A mechanical joint is a part of a machine which is used to connect another mechanical part or mechanism. Mechanical joints may be temporary or permanent. ... more

Inductance of a solenoid

A solenoid is a coil wound into a tightly packed helix. In physics, the term refers specifically to a long, thin loop of wire, often wrapped around a ... more

Hydraulic conductivity (Falling-head method)

Hydraulic conductivity is a property of vascular plants, soils and rocks, that describes the ease with which a fluid (usually water) can move through pore ... more

Inductance - capacitance relation

Inductance per length and capacitance per length are related to each other in the special case of “transmission lines” consisting of two ... more

Diffusion coefficient for dilute gases

Diffusivity or diffusion coefficient is a proportionality constant between the molar flux due to molecular diffusion and the gradient in the concentration ... more

Manning formula

The Manning formula is also known as the Gauckler–Manning formula, or Gauckler–Manning–Strickler formula in Europe. In the United States, in practice, it ... more

Worksheet 316

Calculate the change in length of the upper leg bone (the femur) when a 70.0 kg man supports 62.0 kg of his mass on it, assuming the bone to be equivalent to a uniform rod that is 45.0 cm long and 2.00 cm in radius.

Strategy

The force is equal to the weight supported:

Force (Newton's second law)

and the cross-sectional area of the upper leg bone(femur) is:

Disk area

To find the change in length we use the Young’s modulus formula. The Young’s modulus reference value for a bone under compression is known to be 9×109 N/m2. Now,all quantities except ΔL are known. Thus:

Young's Modulus

Discussion

This small change in length seems reasonable, consistent with our experience that bones are rigid. In fact, even the rather large forces encountered during strenuous physical activity do not compress or bend bones by large amounts. Although bone is rigid compared with fat or muscle, several of the substances listed in Table 5.3(see reference below) have larger values of Young’s modulus Y . In other words, they are more rigid.

Reference:
This worksheet is a modified version of Example 5.4 page 188 found in :
OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

...can't find what you're looking for?

Create a new formula