'

Search results

Found 388 matches
Malus' law in X-ray (relavistic form)

A polarizer or polariser is an optical filter that passes light of a specific polarization and blocks waves of other polarizations.
When a perfect ... more

Borda–Carnot equation

In fluid dynamics the Borda–Carnot equation is an empirical description of the mechanical energy losses of the fluid due to a (sudden) flow expansion. The ... more

Worksheet 306

Calculate the force the biceps muscle must exert to hold the forearm and its load as shown in the figure below, and compare this force with the weight of the forearm plus its load. You may take the data in the figure to be accurate to three significant figures.


(a) The figure shows the forearm of a person holding a book. The biceps exert a force FB to support the weight of the forearm and the book. The triceps are assumed to be relaxed. (b) Here, you can view an approximately equivalent mechanical system with the pivot at the elbow joint

Strategy

There are four forces acting on the forearm and its load (the system of interest). The magnitude of the force of the biceps is FB, that of the elbow joint is FE, that of the weights of the forearm is wa , and its load is wb. Two of these are unknown FB, so that the first condition for equilibrium cannot by itself yield FB . But if we use the second condition and choose the pivot to be at the elbow, then the torque due to FE is zero, and the only unknown becomes FB .

Solution

The torques created by the weights are clockwise relative to the pivot, while the torque created by the biceps is counterclockwise; thus, the second condition for equilibrium (net τ = 0) becomes

Force (Newton's second law)
Torque
Force (Newton's second law)
Torque

Note that sin θ = 1 for all forces, since θ = 90º for all forces. This equation can easily be solved for FB in terms of known quantities,yielding. Entering the known values gives

Mechanical equilibrium - 3=3 Torque example

which yields

Torque
Addition

Now, the combined weight of the arm and its load is known, so that the ratio of the force exerted by the biceps to the total weight is

Division

Discussion

This means that the biceps muscle is exerting a force 7.38 times the weight supported.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Resistor Actual Power (for Voltage difference)

Electric power is the rate, per unit time, at which electrical energy is transferred by an electric circuit. The SI unit of power is the watt, one joule ... more

Guided ray (acceptance angle)

A guided ray (also bound ray or trapped ray) is a ray of light in a multi-mode optical fiber ( type of optical fiber mostly used for communication over ... more

Intensity of unpolarized light (Malus' law)

Light as one type of electromagnetic (EM) wave, is a transverse wave, consisting of varying electric and magnetic fields that oscillate perpendicular to ... more

Force between two bar magnets

The Gilbert model assumes that the magnetic forces between magnets are due to magnetic charges near the poles. This model produces good approximations that ... more

Wind turbine yaw error

All wind turbines operate with a yaw error. In this case an extreme yaw error of 30 degrees is assumed. The flapwise blade root bending moment due to that ... more

Rouse Number

The Rouse number (P or Z) is a non-dimensional number in fluid dynamics which is used to define a concentration profile of suspended sediment and which ... more

Sauter mean diameter ( surface diameter)

Sauter mean diameter (SMD, d32 or D[3, 2]) is an average of particle size. It is defined as the diameter of a sphere that has ... more

...can't find what you're looking for?

Create a new formula