'

Search results

Found 1067 matches
Worksheet 334

In a video game design, a map shows the location of other characters relative to the player, who is situated at the origin, and the direction they are facing. A character currently shows on the map at coordinates (-3, 5). If the player rotates counterclockwise by 20 degrees, then the objects in the map will correspondingly rotate 20 degrees clockwise. Find the new coordinates of the character.

To rotate the position of the character, we can imagine it as a point on a circle, and we will change the angle of the point by 20 degrees. To do so, we first need to find the radius of this circle and the original angle.

Drawing a right triangle inside the circle, we can find the radius using the Pythagorean Theorem:

Pythagorean theorem (right triangle)

To find the angle, we need to decide first if we are going to find the acute angle of the triangle, the reference angle, or if we are going to find the angle measured in standard position. While either approach will work, in this case we will do the latter. By applying the cosine function and using our given information we get

Cosine function
Subtraction

While there are two angles that have this cosine value, the angle of 120.964 degrees is in the second quadrant as desired, so it is the angle we were looking for.

Rotating the point clockwise by 20 degrees, the angle of the point will decrease to 100.964 degrees. We can then evaluate the coordinates of the rotated point

For x axis:

Cosine function

For y axis:

Sine function

The coordinates of the character on the rotated map will be (-1.109, 5.725)

Reference : PreCalculus: An Investigation of Functions,Edition 1.4 © 2014 David Lippman and Melonie Rasmussen
http://www.opentextbookstore.com/precalc/
Creative Commons License : http://creativecommons.org/licenses/by-sa/3.0/us/

Sine function

The trigonometric functions (also called the circular functions) are functions of an angle. They relate the angles of a triangle to the lengths of its ... more

Tangent function

The trigonometric functions (also called the circular functions) are functions of an angle. They relate the angles of a triangle to the lengths of its ... more

Cotangent function

The trigonometric functions (also called the circular functions) are functions of an angle. They relate the angles of a triangle to the lengths of its ... more

Right Triangle (sides)

A right triangle (American English) or right-angled triangle (British English) is a triangle in which one angle is a right angle (that is, a 90-degree ... more

Triple-angle's sine (related to the sine of the single angle)

Trigonometric identities are equalities that involve trigonometric functions and are true for every single value of the occurring variables. Geometrically, ... more

Double-angle's cosine (related to the tangent)

Trigonometric identities are equalities that involve trigonometric functions and are true for every single value of the occurring variables. Geometrically, ... more

Double angle's sine (related to the sine and cosine)

Trigonometric identities are equalities that involve trigonometric functions and are true for every single value of the occurring variables. Geometrically, ... more

Double-angle's sine (related to the tangent)

Trigonometric identities are equalities that involve trigonometric functions and are true for every single value of the occurring variables. Geometrically, ... more

Tangent of the difference of two angles (Bhāskara formula)

Trigonometric identities are equalities that involve trigonometric functions and are true for every single value of the occurring variables. Geometrically, ... more

Tangent of the sum of two angles (Bhāskara formula)

Trigonometric identities are equalities that involve trigonometric functions and are true for every single value of the occurring variables. Geometrically, ... more

Triple-angle's cosine (related to the cosine of the single angle)

rigonometric identities are equalities that involve trigonometric functions and are true for every single value of the occurring variables. Geometrically, ... more

Sine of the sum of three angles

Trigonometric identities are equalities that involve trigonometric functions and are true for every single value of the occurring variables. Geometrically, ... more

Tangent of the sum of three angles

Trigonometric identities are equalities that involve trigonometric functions and are true for every single value of the occurring variables. Geometrically, ... more

Cosine of the sum of three angles

Trigonometric identities are equalities that involve trigonometric functions and are true for every single value of the occurring variables. Geometrically, ... more

Double-angle's cosine( related to the cosine and the sine)

rigonometric identities are equalities that involve trigonometric functions and are true for every single value of the occurring variables. Geometrically, ... more

Secant of the sum of three angles

Trigonometric identities are equalities that involve trigonometric functions and are true for every single value of the occurring variables. Geometrically, ... more

Cosecant of the sum of three angles

Trigonometric identities are equalities that involve trigonometric functions and are true for every single value of the occurring variables. Geometrically, ... more

Cosine value calculator

Calculates the Cosine value of angle θ(in degrees). The cosine of an angle is the ratio of the length of the adjacent side to an acute angle of a right ... more

Radius of the incircle of a right triangle

Right triangle or right-angled triangle is a triangle in which one angle is a right angle (that is, a 90-degree angle). The incircle or inscribed circle ... more

Relation between inradius,exradii and sides of a right triangle

Right triangle or right-angled triangle is a triangle in which one angle is a right angle (that is, a 90-degree angle). The incircle or inscribed circle of ... more

Right triangle altitude theorem

The right triangle altitude theorem or geometric mean theorem is a result in elementary geometry that describes a relation between the altitude on the ... more

Stewart's Theorem ( for triangle's bisectors)

Stewart’s theorem yields a relation between the length of the sides of the triangle and the length of a cevian of the triangle. A cevian is any line ... more

Area of a triangle (by the tangent of an acute or obtuse angle of the triangle)

A triangle is a polygon with three edges and three vertices. In a scalene triangle, all sides are unequal and equivalently all angles are unequal. The area ... more

Pythagorean theorem (right triangle)

In mathematics, the Pythagorean theorem, also known as Pythagoras’ theorem, is a fundamental relation in Euclidean geometry among the three sides of ... more

Area Moment of Inertia - Filled Right Triangle

The second moment of area, also known as moment of inertia of plane area, area moment of inertia, polar moment of area or second area moment, is a ... more

Relation between the altitude to the hypotenuse and the legs of a right triangle

Right triangle or right-angled triangle is a triangle in which one angle is a right angle (that is, a 90-degree angle). Altitude of a triangle is a line ... more

Tangent value calculator

Calculates the Tangent value of angle θ(in degrees). The tangent of an angle is the ratio of the length of the opposite side to an acute angle of a right ... more

Morley's trisector theorem

Morley’s trisector theorem states that in any triangle, the three points of intersection of the adjacent angle trisectors form an equilateral ... more

...can't find what you're looking for?

Create a new formula