'

Search results

Found 1819 matches
Vapor Pressure

Vapor pressure or equilibrium vapor pressure is defined as the pressure exerted by a vapor in thermodynamic equilibrium with its condensed phases (solid or ... more

Heat transfer coefficient

Heat flux or thermal flux is the rate of heat energy transfer through a given surface, per unit surface. The heat transfer coefficient or film coefficient, ... more

Discharge Coefficient

In a nozzle or other constriction, the discharge coefficient (also known as coefficient of discharge) is the ratio of the actual discharge to the ... more

Worksheet 296

(a) Calculate the buoyant force on 10,000 metric tons (1.00×10 7 kg) of solid steel completely submerged in water, and compare this with the steel’s weight.

(b) What is the maximum buoyant force that water could exert on this same steel if it were shaped into a boat that could displace 1.00×10 5 m 3 of water?

Strategy for (a)

To find the buoyant force, we must find the weight of water displaced. We can do this by using the densities of water and steel given in Table [insert table #] We note that, since the steel is completely submerged, its volume and the water’s volume are the same. Once we know the volume of water, we can find its mass and weight

First, we use the definition of density to find the steel’s volume, and then we substitute values for mass and density. This gives :

Density

Because the steel is completely submerged, this is also the volume of water displaced, Vw. We can now find the mass of water displaced from the relationship between its volume and density, both of which are known. This gives:

Density

By Archimedes’ principle, the weight of water displaced is m w g , so the buoyant force is:

Force (Newton's second law)

The steel’s weight is 9.80×10 7 N , which is much greater than the buoyant force, so the steel will remain submerged.

Strategy for (b)

Here we are given the maximum volume of water the steel boat can displace. The buoyant force is the weight of this volume of water.

The mass of water displaced is found from its relationship to density and volume, both of which are known. That is:

Density

The maximum buoyant force is the weight of this much water, or

Force (Newton's second law)

Discussion

The maximum buoyant force is ten times the weight of the steel, meaning the ship can carry a load nine times its own weight without sinking.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

R-value (insulation)

In building and construction,the R-value is a measure of how well an object, per unit of its exposed area, resists conductive flow of heat: the greater the ... more

Desired radius of a curve

The equation for the desired radius of a curve, takes into account the factors of speed and superelevation (e). This equation can be algebraically ... more

Drift Velocity (with current and conductor section area)

The drift velocity is the average velocity that a particle, such as an electron, attains in a material due to an electric field. It can also be referred to ... more

Beam shear

Shear stress,is defined as the component of stress coplanar with a material cross section. The average shear stress is force per unit area. Beam shear is ... more

Block and tackle - efficiency approximation - with friction factor

A block and tackle is a system of two or more pulleys with a rope or cable threaded between them, usually used to lift or pull heavy loads.A more precise ... more

Friction velocity (shear velocity)

Friction velocity, is a form by which a shear stress may be re-written in units of velocity. It is useful as a method in fluid mechanics to compare true ... more

...can't find what you're looking for?

Create a new formula