'

Search results

Found 1274 matches
Area of rhombus (by diagonals)

Rhombus is a simple (non-self-intersecting) quadrilateral whose four sides all have the same length. Every rhombus is a parallelogram, and a rhombus with ... more

Vapor Pressure

Vapor pressure or equilibrium vapor pressure is defined as the pressure exerted by a vapor in thermodynamic equilibrium with its condensed phases (solid or ... more

General Logistic Sigmoid Function

A logistic function or logistic curve is a common “S” shape (sigmoid curve). Data that follows an increasing logistic curve usually describes ... more

Depth of focus (depth of field) in relation to the magnification

The depth of focus (or depth of field) is a lens optics concept that measures the tolerance of placement of the image plane (the film plane in a camera) in ... more

Wheel flop

Wheel flop refers to steering behavior in which a bicycle or motorcycle tends to turn more than expected due to the front wheel “flopping” over ... more

Lateral earth active pressure (Rankine theory)

Lateral earth pressure is the pressure that soil exerts in the horizontal direction. Rankine’s theory, is a stress field solution that predicts ... more

Mean Orbital Speed

The orbital speed of a body, generally a planet, a natural satellite, an artificial satellite, or a multiple star, is the speed at which it orbits around ... more

Law of sines ( related to the sides of the triangle)

Law of sines is an equation relating the lengths of the sides of any shaped triangle to the sines of its angles. The law of sines can be used to compute ... more

Law of tangents for the triangles

The law of tangents is a statement about the relationship between the tangents of two angles of a triangle and the lengths of the opposing sides.The law of ... more

Worksheet 296

(a) Calculate the buoyant force on 10,000 metric tons (1.00×10 7 kg) of solid steel completely submerged in water, and compare this with the steel’s weight.

(b) What is the maximum buoyant force that water could exert on this same steel if it were shaped into a boat that could displace 1.00×10 5 m 3 of water?

Strategy for (a)

To find the buoyant force, we must find the weight of water displaced. We can do this by using the densities of water and steel given in Table [insert table #] We note that, since the steel is completely submerged, its volume and the water’s volume are the same. Once we know the volume of water, we can find its mass and weight

First, we use the definition of density to find the steel’s volume, and then we substitute values for mass and density. This gives :

Density

Because the steel is completely submerged, this is also the volume of water displaced, Vw. We can now find the mass of water displaced from the relationship between its volume and density, both of which are known. This gives:

Density

By Archimedes’ principle, the weight of water displaced is m w g , so the buoyant force is:

Force (Newton's second law)

The steel’s weight is 9.80×10 7 N , which is much greater than the buoyant force, so the steel will remain submerged.

Strategy for (b)

Here we are given the maximum volume of water the steel boat can displace. The buoyant force is the weight of this volume of water.

The mass of water displaced is found from its relationship to density and volume, both of which are known. That is:

Density

The maximum buoyant force is the weight of this much water, or

Force (Newton's second law)

Discussion

The maximum buoyant force is ten times the weight of the steel, meaning the ship can carry a load nine times its own weight without sinking.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

...can't find what you're looking for?

Create a new formula