'

Search results

Found 815 matches
Darcy friction factor - Haaland equation

In fluid dynamics, the Darcy friction factor formulae are equations that allow the calculation of the Darcy friction factor, a dimensionless quantity used ... more

Density

The density of a material is defined as its mass per unit volume. For a pure substance the density has the same numerical value as its mass concentration. ... more

NTU method - the effectiveness of a parallel flow heat exchanger

The Number of Transfer Units (NTU) Method is used to calculate the rate of heat transfer in heat exchangers (especially counter ... more

NTU method - the effectiveness of a counter-current flow heat exchanger

The Number of Transfer Units (NTU) Method is used to calculate the rate of heat transfer in heat exchangers (especially counter ... more

Density of an ideal gas

The density, or more precisely, the volumetric mass density, of a substance is its mass per unit volume. The density of gases is strongly affected by ... more

Impact Pressure - isentropic flow

In compressible fluid dynamics, impact pressure (dynamic pressure) is the difference between total pressure (also known as pitot pressure or stagnation ... more

Prandtl–Meyer function

This entry marks fxSolver’s 2000th equation milestone and is a kind contribution by Reddit user ... more

Friction Loss (hydraulic slope)

In fluid flow, friction loss (or skin friction) is the loss of pressure or “head” that occurs in pipe or duct flow due to the effect of the fluid’s ... more

Darcy's law (simplified)

Darcy’s law states that the volume of flow of the pore fluid through a porous medium per unit time is proportional to the rate of change of excess ... more

Worksheet 296

(a) Calculate the buoyant force on 10,000 metric tons (1.00×10 7 kg) of solid steel completely submerged in water, and compare this with the steel’s weight.

(b) What is the maximum buoyant force that water could exert on this same steel if it were shaped into a boat that could displace 1.00×10 5 m 3 of water?

Strategy for (a)

To find the buoyant force, we must find the weight of water displaced. We can do this by using the densities of water and steel given in Table [insert table #] We note that, since the steel is completely submerged, its volume and the water’s volume are the same. Once we know the volume of water, we can find its mass and weight

First, we use the definition of density to find the steel’s volume, and then we substitute values for mass and density. This gives :

Density

Because the steel is completely submerged, this is also the volume of water displaced, Vw. We can now find the mass of water displaced from the relationship between its volume and density, both of which are known. This gives:

Density

By Archimedes’ principle, the weight of water displaced is m w g , so the buoyant force is:

Force (Newton's second law)

The steel’s weight is 9.80×10 7 N , which is much greater than the buoyant force, so the steel will remain submerged.

Strategy for (b)

Here we are given the maximum volume of water the steel boat can displace. The buoyant force is the weight of this volume of water.

The mass of water displaced is found from its relationship to density and volume, both of which are known. That is:

Density

The maximum buoyant force is the weight of this much water, or

Force (Newton's second law)

Discussion

The maximum buoyant force is ten times the weight of the steel, meaning the ship can carry a load nine times its own weight without sinking.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

...can't find what you're looking for?

Create a new formula