'

Search results

Found 377 matches
Lundquist number

In plasma physics, the Lundquist number (denoted by S) is a dimensionless ratio which compares the timescale of an Alfvén wave crossing to the timescale of ... more

Torque

Torque, moment or moment of force, is the tendency of a force to rotate an object about an axis, fulcrum, or pivot. Mathematically, torque is defined as ... more

Torsion

In solid mechanics, torsion is the twisting of an object due to an applied torque. It is expressed in newton metres (N·m) or foot-pound force (ft·lbf). In ... more

Electric Current

An electric current is a flow of electric charge. In electric circuits this charge is often carried by moving electrons in a wire. It can also be carried ... more

Worksheet 306

Calculate the force the biceps muscle must exert to hold the forearm and its load as shown in the figure below, and compare this force with the weight of the forearm plus its load. You may take the data in the figure to be accurate to three significant figures.


(a) The figure shows the forearm of a person holding a book. The biceps exert a force FB to support the weight of the forearm and the book. The triceps are assumed to be relaxed. (b) Here, you can view an approximately equivalent mechanical system with the pivot at the elbow joint

Strategy

There are four forces acting on the forearm and its load (the system of interest). The magnitude of the force of the biceps is FB, that of the elbow joint is FE, that of the weights of the forearm is wa , and its load is wb. Two of these are unknown FB, so that the first condition for equilibrium cannot by itself yield FB . But if we use the second condition and choose the pivot to be at the elbow, then the torque due to FE is zero, and the only unknown becomes FB .

Solution

The torques created by the weights are clockwise relative to the pivot, while the torque created by the biceps is counterclockwise; thus, the second condition for equilibrium (net τ = 0) becomes

Force (Newton's second law)
Torque
Force (Newton's second law)
Torque

Note that sin θ = 1 for all forces, since θ = 90º for all forces. This equation can easily be solved for FB in terms of known quantities,yielding. Entering the known values gives

Mechanical equilibrium - 3=3 Torque example

which yields

Torque
Addition

Now, the combined weight of the arm and its load is known, so that the ratio of the force exerted by the biceps to the total weight is

Division

Discussion

This means that the biceps muscle is exerting a force 7.38 times the weight supported.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Torque (with angle)

Torque, moment or moment of force, is the tendency of a force to rotate an object about an axis, fulcrum, or pivot. Mathematically, torque is defined as ... more

Period of Precession - (Torque-induced - Classical Newtonian)

Precession is a change in the orientation of the rotational axis of a rotating body. In an appropriate reference frame it can be defined as a change in the ... more

Precession (Torque-free)

Precession is a change in the orientation of the rotational axis of a rotating body. In an appropriate reference frame it can be defined as a change in the ... more

Precession - (Torque-induced - Classical Newtonian)

Precession is a change in the orientation of the rotational axis of a rotating body. In an appropriate reference frame it can be defined as a change in the ... more

Varignon's theorem in statics

Torque, moment or moment of force (see the terminology below) is the tendency of a force to rotate an object about an axis. In addition to the tendency to ... more

...can't find what you're looking for?

Create a new formula