'

Wave shoaling height

Description

In fluid dynamics, wave shoaling is the effect by which surface waves entering shallower water change in wave height. It is caused by the fact that the group velocity, which is also the wave-energy transport velocity, changes with water depth. Under stationary conditions, a decrease in transport speed must be compensated by an increase in energy density in order to maintain a constant energy flux. Shoaling waves will also exhibit a reduction in wavelength while the frequency remains constant.

In shallow water and parallel depth contours, non-breaking waves will increase in wave height as the wave packet enters shallower water. This is particularly evident for tsunamis as they wax in height when approaching a coastline, with devastating results.

Waves nearing the coast change wave height through different effects. Some of the important wave processes are refraction, diffraction, reflection, wave breaking, wave–current interaction, friction, wave growth due to the wind, and wave shoaling. In the absence of the other effects, wave shoaling is the change of wave height that occurs solely due to changes in mean water depth – without changes in wave propagation direction and dissipation. Pure wave shoaling occurs for long-crested waves propagating perpendicular to the parallel depth contour lines of a mildly sloping sea-bed. Then the wave height H at a certain location can be expressed as shown here.

Related formulas

Variables

Hwave height H at a certain location (m)
Ksshoaling coefficient (dimensionless)
H0wave height in deep water (m)