Cross Section (flux)

Description

The cross section is an effective area that quantifies the intrinsic likelihood of a scattering event when an incident beam strikes a target object, made of discrete particles. The cross section of a particle is the same as the cross section of a hard object, if the probabilities of hitting them with a ray are the same. It is typically denoted σ and measured in units of area.

In scattering experiments, one is often interested in knowing how likely a given event occurs. However, the rate depends strongly on experimental variables such as the density of the target material, the intensity of the beam, or the area of overlap between the beam and the target material. To control for these mundane differences, one can factor out these variables, resulting in an area-like quantity known as the cross section.

Cross section is associated with a particular event (e.g. elastic collision, a specific chemical reaction, a specific nuclear reaction) involving a certain combination of beam (e.g. light, elementary particles, nuclei) and target material (e.g. colloids, gases, atoms, nuclei). Often there are additional factors that can affect the cross section in complicated ways, such as the energy of the beam.

If the target material is a thin slab placed perpendicular to the beam, one may express the cross section in terms of flux, as shown here.

Related formulas

Variables

σcross section of this event (m2)
nnumber density of the target particles (m-3)
Φflux of the incident beam (Wb)
amount of flux lost due to the occurrence of this event (Wb)
dzthickness of the target material (m)