Central processing unit dynamic power consumed


CPU power dissipation is the process in which central processing units (CPUs) consume electrical energy, and dissipate this energy both by the action of the switching devices contained in the CPU (such as transistors or vacuum tubes) and by the energy lost in the form of heat due to the impedance of the electronic circuits.

Designing CPUs that perform tasks efficiently without overheating is a major consideration of nearly all CPU manufacturers to date. Some CPU implementations use very little power; for example, the CPUs in mobile phones often use just a few watts of electricity, while some microcontrollers used in embedded systems may consume only a few milliwatts or even as little as a few microwatts. In comparison, CPUs in general-purpose personal computers, such as desktops and laptops, dissipate significantly more power because of their higher complexity and speed. These microelectronic CPUs may consume power in the order of a few watts to hundreds of watts. Historically, early CPUs implemented with vacuum tubes consumed power on the order of many kilowatts.

CPUs for desktop computers typically use a significant portion of the power consumed by the computer. Other major uses include fast video cards, which contain graphics processing units, and power supplies. In laptops, the LCD’s backlight also uses a significant portion of overall power. While energy-saving features have been instituted in personal computers for when they are idle, the overall consumption of today’s high-performance CPUs is considerable. This is in strong contrast with the much lower energy consumption of CPUs designed for low-power devices. The dynamic power consumption originates from the activity of logic gates inside a CPU. When the logic gates toggle, energy is flowing as the capacitors inside them are charged and discharged. The dynamic power consumed by a CPU is approximately proportional to the CPU frequency, and to the square of the CPU voltage.

When logic gates toggle, some transistors inside may change states. As this takes a finite amount of time, it may happen that for a very brief amount of time some transistors are conducting simultaneously. A direct path between the source and ground then results in some short-circuit power loss. The magnitude of this power is dependent on the logic gate, and is rather complex to model on a macro level.

Related formulas


Pdynamic power (W)
Ccapacitance (farad)
VCPU voltage (V)
fCPU frequency (Hz)