'

Search results

Found 1113 matches
Center of mass - Barycentric coordinates

In physics, the center of mass of a distribution of mass in space is the unique point where the weighted relative position of the distributed mass sums to ... more

Horizontal Curve - Allowable radius

The allowable radius for a horizontal curve can then be determined by knowing the intended design velocity, the coefficient of friction, and the allowed ... more

Mean Orbital Speed

The orbital speed of a body, generally a planet, a natural satellite, an artificial satellite, or a multiple star, is the speed at which it orbits around ... more

Free-fall time (Infall of a spherically-symmetric distribution of mass)

The free-fall time is the characteristic time that would take a body to collapse under its own gravitational attraction, if no other forces existed to ... more

Center of mass (for two particles)

The center of mass of a distribution of mass in space is the unique point where the weighted relative position of the distributed mass sums to zero.
... more

Center of mass (for a system of n-particles)

The center of mass of a distribution of mass in space is the unique point where the weighted relative position of the distributed mass sums to zero.
... more

Elastic deflection at any point along the span of a center loaded beam

Elastic deflection is the degree to which a structural element is displaced under a load.
The deflection at any point, along the span of a center ... more

Newton's law of universal gravitation

Every point mass in the universe attracts every other point mass with a force that is directly proportional to the product of their masses and inversely ... more

Inverse-square law gravitational field ( free-fall time for two point objects on a radial path)

Two objects in space orbiting each other in the absence of other forces are in free fall around each other. The motion of two objects moving radially ... more

Worksheet 308

Astrology, that unlikely and vague pseudoscience, makes much of the position of the planets at the moment of one’s birth. The only known force a planet exerts on Earth is gravitational.

(a) Calculate the gravitational force exerted on a 4.20 kg baby by a 100 kg father 0.200 m away at birth (he is assisting, so he is close to the child).

(b) Calculate the force on the baby due to Jupiter if it is at its closest distance to Earth, some 6.29e+11 m away. How does the force of Jupiter on the baby compare to the force of the father on the baby?

Father’s gravitational force on the baby is:

Newton's law of universal gravitation

Jupiter’s gravitational force on the baby is:

Newton's law of universal gravitation
Division

(c) What should be the father’s weight, so that he exerts the same force on the baby as that of Jupiter? **
**this section is not included in the Reference material

Newton's law of universal gravitation

Discussion

Other objects in the room and the hospital building also exert similar gravitational forces. (Of course, there could be an unknown force acting, but scientists first need to be convinced that there is even an effect, much less that an unknown force causes it.)

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Dedicated to little Konstantinos

...can't find what you're looking for?

Create a new formula