'

Search results

Found 1004 matches
Free-fall time (radial trajectory of an ellipse with an eccentricity of 1 and semi-major axis R/2)

The free-fall time is the characteristic time that would take a body to collapse under its own gravitational attraction, if no other forces existed to ... more

Mean anomaly - function of gravitational parameter

In celestial mechanics, the mean anomaly is an angle used in calculating the position of a body in an elliptical orbit in the classical two-body problem. ... more

Kepler's Third Law

In astronomy, Kepler’s laws of planetary motion are three scientific laws describing the motion of planets around the Sun.

1.The orbit of a ... more

Semi-Major Axis - Ellipse

In geometry, the major axis of an ellipse is the longest diameter: a line (line segment) that runs through the center and both foci, with ends at the ... more

Nodal Precession

Nodal precession is the precession of an orbital plane around the rotation axis of an astronomical body such as Earth. This precession is due to the ... more

True anomaly - elliptic orbits

In celestial mechanics, true anomaly is an angular parameter that defines the position of a body moving along a Keplerian orbit. It is the angle between ... more

True anomaly - as a function of eccentric anomaly, sin form

In celestial mechanics, true anomaly is an angular parameter that defines the position of a body moving along a Keplerian orbit. It is the angle between ... more

True anomaly - as a function of eccentric anomaly, Tan form

In celestial mechanics, true anomaly is an angular parameter that defines the position of a body moving along a Keplerian orbit. It is the angle between ... more

True anomaly - as a function of eccentric anomaly, cos form

In celestial mechanics, true anomaly is an angular parameter that defines the position of a body moving along a Keplerian orbit. It is the angle between ... more

Kepler's First Law

In astronomy, Kepler’s laws of planetary motion are three scientific laws describing the motion of planets around the Sun.

1.The orbit of a ... more

...can't find what you're looking for?

Create a new formula