'

Search results

Found 1096 matches
Angle of deflection of a uniformly loaded cantilever beam

In engineering, deflection is the degree to which a structural element is displaced under a load. It may refer to an angle or a distance.
The angle of ... more

Radau parameter - related to Darwin / Radau equation

In astrophysics, the Darwin / Radau equation gives an approximate relation between the moment of inertia factor of a planetary body and its rotational ... more

Maximum elastic deflection of an off-center loaded beam supported by two simple supports

In engineering, deflection is the degree to which a structural element is displaced under a load.
The maximum elastic deflection on a beam supported ... more

Euler line (distance between the centroid and the orthocenter of a triangle)

In geometry, the Euler line is a line determined from any triangle that is not equilateral. It passes through several important points determined from the ... more

Euler line (distance between the circumcenter and the orthocenter of a triangle)

In geometry, the Euler line is a line determined from any triangle that is not equilateral. It passes through several important points determined from the ... more

Euler line (distance between the centroid and the circumcenter of a triangle)

In geometry, the Euler line is a line determined from any triangle that is not equilateral. It passes through several important points determined from the ... more

Dirac particle (spin magnetic moment)

The spin magnetic moment of a charged, spin-1/2 particle that does not possess any internal structure (a Dirac particle).

In physics, mainly ... more

Eccentricity e of a cylindric section

Eccentricity e of the cylindric section and semi-major axis of the cylindric section depend on the radius of the cylinder and the angle between the secant ... more

Oblate spheroid eccentricity (c<a)

A spheroid, or ellipsoid of revolution is a quadric surface obtained by rotating an ellipse about one of its principal axes; in other words, an ellipsoid ... more

Worksheet 306

Calculate the force the biceps muscle must exert to hold the forearm and its load as shown in the figure below, and compare this force with the weight of the forearm plus its load. You may take the data in the figure to be accurate to three significant figures.


(a) The figure shows the forearm of a person holding a book. The biceps exert a force FB to support the weight of the forearm and the book. The triceps are assumed to be relaxed. (b) Here, you can view an approximately equivalent mechanical system with the pivot at the elbow joint

Strategy

There are four forces acting on the forearm and its load (the system of interest). The magnitude of the force of the biceps is FB, that of the elbow joint is FE, that of the weights of the forearm is wa , and its load is wb. Two of these are unknown FB, so that the first condition for equilibrium cannot by itself yield FB . But if we use the second condition and choose the pivot to be at the elbow, then the torque due to FE is zero, and the only unknown becomes FB .

Solution

The torques created by the weights are clockwise relative to the pivot, while the torque created by the biceps is counterclockwise; thus, the second condition for equilibrium (net τ = 0) becomes

Force (Newton's second law)
Torque
Force (Newton's second law)
Torque

Note that sin θ = 1 for all forces, since θ = 90º for all forces. This equation can easily be solved for FB in terms of known quantities,yielding. Entering the known values gives

Mechanical equilibrium - 3=3 Torque example

which yields

Torque
Addition

Now, the combined weight of the arm and its load is known, so that the ratio of the force exerted by the biceps to the total weight is

Division

Discussion

This means that the biceps muscle is exerting a force 7.38 times the weight supported.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

...can't find what you're looking for?

Create a new formula