'

Search results

Found 894 matches
Double-angle's sine (related to the tangent)

Trigonometric identities are equalities that involve trigonometric functions and are true for every single value of the occurring variables. Geometrically, ... more

Double-angle's cosine( related to the cosine and the sine)

rigonometric identities are equalities that involve trigonometric functions and are true for every single value of the occurring variables. Geometrically, ... more

Spherical Law of Cosines

In spherical trigonometry, the law of cosines (also called the cosine rule for sides) is a theorem relating the sides and angles of spherical triangles, ... more

Tangent of the difference of two angles (Bhāskara formula)

Trigonometric identities are equalities that involve trigonometric functions and are true for every single value of the occurring variables. Geometrically, ... more

Tangent of the sum of two angles (Bhāskara formula)

Trigonometric identities are equalities that involve trigonometric functions and are true for every single value of the occurring variables. Geometrically, ... more

Medians' theorem

Relates the medians and the sides of an arbitrary triangle. Median of a triangle is a line segment joining a vertex to the midpoint of the opposing side. ... more

Sine of the sum of three angles

Trigonometric identities are equalities that involve trigonometric functions and are true for every single value of the occurring variables. Geometrically, ... more

Cosine of the sum of three angles

Trigonometric identities are equalities that involve trigonometric functions and are true for every single value of the occurring variables. Geometrically, ... more

Tangent of the sum of three angles

Trigonometric identities are equalities that involve trigonometric functions and are true for every single value of the occurring variables. Geometrically, ... more

Length of a side of an inscribed square in a triangle

Every acute triangle has three inscribed squares (squares in its interior such that all four of a square’s vertices lie on a side of the triangle, so ... more

...can't find what you're looking for?

Create a new formula