Search results

Found 729 matches

Dilution is a reduction in the concentration of a chemical (gas, vapor, solution). It is the process of reducing the concentration of a solute in solution, ... more

Sphericity of soil particles (related to the volume)

Sphericity is a measure of how spherical (round) an object is. The sphericity of a sphere is 1 and, by the isoperimetric inequality, any particle which is ... more

Wet bulk density of soil (total bulk density)

Bulk density is a property of powders, granules, and other “divided” solids, especially used in reference to mineral components (soil, gravel), ... more

Moist unit weight

In fluid mechanics, specific weight represents the force exerted by gravity on a unit volume of a fluid. Specific weight can be used as a characteristic ... more

Charles's law

Charles’ law is an experimental gas law which describes how gases tend to expand when heated. When the pressure on a sample of a dry gas is held ... more

Worksheet 296

(a) Calculate the buoyant force on 10,000 metric tons (1.00×10 7 kg) of solid steel completely submerged in water, and compare this with the steel’s weight.

(b) What is the maximum buoyant force that water could exert on this same steel if it were shaped into a boat that could displace 1.00×10 5 m 3 of water?

Strategy for (a)

To find the buoyant force, we must find the weight of water displaced. We can do this by using the densities of water and steel given in Table [insert table #] We note that, since the steel is completely submerged, its volume and the water’s volume are the same. Once we know the volume of water, we can find its mass and weight

First, we use the definition of density to find the steel’s volume, and then we substitute values for mass and density. This gives :


Because the steel is completely submerged, this is also the volume of water displaced, Vw. We can now find the mass of water displaced from the relationship between its volume and density, both of which are known. This gives:


By Archimedes’ principle, the weight of water displaced is m w g , so the buoyant force is:

Force (Newton's second law)

The steel’s weight is 9.80×10 7 N , which is much greater than the buoyant force, so the steel will remain submerged.

Strategy for (b)

Here we are given the maximum volume of water the steel boat can displace. The buoyant force is the weight of this volume of water.

The mass of water displaced is found from its relationship to density and volume, both of which are known. That is:


The maximum buoyant force is the weight of this much water, or

Force (Newton's second law)


The maximum buoyant force is ten times the weight of the steel, meaning the ship can carry a load nine times its own weight without sinking.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Number density (Relation to Mass density)

Number density is an intensive quantity used to describe the degree of concentration of countable objects. For atoms or molecules of a well-defined ... more

Reduced specific volume

In thermodynamicsIn thermodynamics, the reduced properties of a fluid are a set of state variables normalized by the fluid’s state properties at its ... more

Atomic packing factor

In crystallography, atomic packing factor (APF), packing efficiency or packing fraction is the fraction of volume in a crystal ... more


The density of a material is defined as its mass per unit volume. For a pure substance the density has the same numerical value as its mass concentration. ... more

...can't find what you're looking for?

Create a new formula