'

Search results

Found 799 matches
Electrical conductance (related to the material and the shape of the conductor)

In physics and electrical engineering, a conductor is an object or type of material that permits the flow of electrical current in one or more directions. ... more

Darby-Melson equation (for Buckingham-Reiner equation)

Although an exact analytical solution of the Buckingham-Reiner equation can be obtained because it is a fourth order polynomial equation in f, due to ... more

Buckingham-Reiner equation (Darcy friction factor for laminar flow)

An exact description of friction loss (Darcy Weisbach equation) for Bingham plastics in fully developed laminar pipe flow was first published by ... more

Exhaust Gas Velocity

A rocket engine nozzle is a propelling nozzle (usually of the de Laval type) used in a rocket engine to expand and accelerate the combustion gases produced ... more

Worksheet 296

(a) Calculate the buoyant force on 10,000 metric tons (1.00×10 7 kg) of solid steel completely submerged in water, and compare this with the steel’s weight.

(b) What is the maximum buoyant force that water could exert on this same steel if it were shaped into a boat that could displace 1.00×10 5 m 3 of water?

Strategy for (a)

To find the buoyant force, we must find the weight of water displaced. We can do this by using the densities of water and steel given in Table [insert table #] We note that, since the steel is completely submerged, its volume and the water’s volume are the same. Once we know the volume of water, we can find its mass and weight

First, we use the definition of density to find the steel’s volume, and then we substitute values for mass and density. This gives :

Density

Because the steel is completely submerged, this is also the volume of water displaced, Vw. We can now find the mass of water displaced from the relationship between its volume and density, both of which are known. This gives:

Density

By Archimedes’ principle, the weight of water displaced is m w g , so the buoyant force is:

Force (Newton's second law)

The steel’s weight is 9.80×10 7 N , which is much greater than the buoyant force, so the steel will remain submerged.

Strategy for (b)

Here we are given the maximum volume of water the steel boat can displace. The buoyant force is the weight of this volume of water.

The mass of water displaced is found from its relationship to density and volume, both of which are known. That is:

Density

The maximum buoyant force is the weight of this much water, or

Force (Newton's second law)

Discussion

The maximum buoyant force is ten times the weight of the steel, meaning the ship can carry a load nine times its own weight without sinking.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Static balance

Rotating unbalance is the uneven distribution of mass around an axis of rotation. A rotating mass, or rotor, is said to be out of balance when its center ... more

Knoop hardness test

The Knoop hardness test /kəˈnuːp/ is a microhardness test – a test for mechanical hardness used particularly for very brittle materials or thin sheets, ... more

Buckingham-Reiner equation (Darcy friction factor for turbulent flow)

A dimensionless empirical expression for the turbulent flow friction factor.

... more

Ripple factor

For the root mean square value of the ripple voltage, the calculation is more involved as the shape of the ripple waveform has a bearing on the result. ... more

Darcy friction factor - Laminar flow

In fluid dynamics, the Darcy friction factor formulae are equations that allow the calculation of the Darcy friction factor, a dimensionless quantity used ... more

...can't find what you're looking for?

Create a new formula