'

Search results

Found 859 matches
Dodecahedron regular (inscribed sphere radius

A regular dodecahedron is a polyhedron composed of 12 regular pentagonal faces, with three meeting at each vertex. It has 20 vertices, 30 edges and 160 ... more

Regular Dodecahedron (Surface Area)

A regular dodecahedron is a polyhedron composed of 12 regular pentagonal faces, with three meeting at each vertex. It has 20 vertices, 30 edges and 160 ... more

Regular Dodecahedron ( midscribed sphere radius)

A regular dodecahedron is a polyhedron composed of 12 regular pentagonal faces, with three meeting at each vertex. It has 20 vertices, 30 edges and 160 ... more

Regular Dodecahedron (Volume)

A regular dodecahedron is a polyhedron composed of 12 regular pentagonal faces, with three meeting at each vertex. It has 20 vertices, 30 edges and 160 ... more

Regular Icosahedron ( circumscribed sphere radius)

An icosahedron is a polyhedron with 20 triangular faces, 30 edges and 12 vertices. A regular icosahedron has 20 identical equilateral faces, with five of ... more

Radius of an inscribed sphere in a circumscribed Regular Octahedron

An octahedron is a polyhedron with eight faces. A regular octahedron is a Platonic solid composed of eight equilateral triangles, four of which meet at ... more

Radius of a circumscribed sphere of a Regular Octahedron

An octahedron is a polyhedron with eight faces. A regular octahedron is a Platonic solid composed of eight equilateral triangles, four of which meet at ... more

Regular Icosahedron ( midscribed sphere radius)

An icosahedron is a polyhedron with 20 triangular faces, 30 edges and 12 vertices. A regular icosahedron has 20 identical equilateral faces, with five of ... more

Regular Icosahedron ( inscribed sphere radius)

An icosahedron is a polyhedron with 20 triangular faces, 30 edges and 12 vertices. A regular icosahedron has 20 identical equilateral faces, with five of ... more

Radius of exsphere of the regular tetrahedron

The exsphere of a face of a regular tetrahedron is the sphere outside the tetrahedron which touches the face and the planes defined by extending the ... more

...can't find what you're looking for?

Create a new formula