'

Search results

Found 601 matches
Enthalpy of isobaric process

An isobaric process is a thermodynamic process in which the pressure stays constant: ΔP = 0. The heat transferred to the system does work, but also changes ... more

Bejan number (modified form)

The modified form of the Bejan number, riginally proposed by Bhattacharjee and Grosshandler for momentum processes, by replacing the dynamic viscosity ... more

Magnetic Reynolds number (relationship to eddy current braking)

The dimensionless magnetic Reynolds number, is also used in cases where there is no physical fluid involved.

The magnetic Reynolds number is the ... more

NTU method - actual heat transfer rate (q) (relative to the hot fluid)

The Number of Transfer Units (NTU) Method is used to calculate the rate of heat transfer in heat exchangers (especially counter ... more

NTU method - actual heat transfer rate (q) (relative to the cold fluid)

The Number of Transfer Units (NTU) Method is used to calculate the rate of heat transfer in heat exchangers (especially counter ... more

NTU method - the heat transferred between the fluids (q)

The Number of Transfer Units (NTU) Method is used to calculate the rate of heat transfer in heat exchangers (especially counter ... more

NTU method - maximum heat transfer rate (q_max)

The Number of Transfer Units (NTU) Method is used to calculate the rate of heat transfer in heat exchangers (especially counter ... more

Entropy of isothermal process in terms of volume

An isothermal process is a change of a system, in which the temperature remains constant: ΔT = 0. This typically occurs when a system is in contact with an ... more

Entropy of isothermal process in terms of pressure

An isothermal process is a change of a system, in which the temperature remains constant: ΔT = 0. This typically occurs when a system is in contact with an ... more

Thermal de Broglie wavelength (Massless particles)

The thermal de Broglie wavelength is the average de Broglie wavelength of the gas particles in an ideal gas at the specified temperature. We can take the ... more

...can't find what you're looking for?

Create a new formula